
Optimal Network Security Hardening Using Attack Graph Games
Karel Durkota1, Viliam Lisý1, Branislav Bošanský2, Christopher Kiekintveld3

1Agent Technology Center, Dept. of Computer Science, FEE, Czech Technical University in Prague
{durkota,lisy}@agents.fel.cvut.cz

2Department of Computer Science, Aarhus University
bosansky@cs.au.dk

3Computer Science Department, University of Texas at El Paso
cdkiekintveld@utep.edu

Abstract
Preventing attacks in a computer network is the
core problem in network security. We introduce
a new game-theoretic model of the interaction be-
tween a network administrator who uses limited re-
source to harden a network and an attacker who fol-
lows a multi-stage plan to attack the network. The
possible plans of the attacker are compactly repre-
sented using attack graphs, while the defender adds
fake targets (honeypots) to the network to deceive
the attacker. The compact representation of the at-
tacker’s strategies presents a computational chal-
lenge and finding the best response of the attacker
is NP-hard. We present a solution method that first
translates an attack graph into an MDP and solves
it using policy search with a set of pruning tech-
niques. We present an empirical evaluation of the
model and solution algorithms, evaluating scalabil-
ity, the types of solutions that are generated for re-
alistic cases, and sensitivity analysis.

1 Introduction
Networked computer systems support a wide range of critical
functions in both civilian and military domains. Securing this
infrastructure is extremely costly and there is a need for new
automated decision support systems that aid human network
administrators to detect and prevent attacks.

We focus on network security hardening problems in which
a network administrator (defender) reduces the risk of attacks
on the network by introducing honeypots (fake hosts or ser-
vices) into their network [Qassrawi and Hongli, 2010]. Legit-
imate users do not interact with honeypots; hence, honeypots
act as decoys and distract attackers from the real hosts, send
intrusion detection alarms to the administrator, and/or gather
detailed information the attacker’s activity [Provos, 2004;
Grimes et al., 2005]. However, believable honeypots are
costly to set up and maintain. For example, in [Carroll and
Grosu, 2011; Cai et al., 2009] the authors propose a game-
theoretic model that studies various camouflaging signals that
honeypots can send to the attacker in order to minimize the
chance of being detected. Deciding how to optimally allocate
honeypots to reduce the risk of attacks on a network presents
a challenging decision for the defender. On the other hand, a

well-informed attacker should anticipate the use of honeypots
and try to avoid them.

We use game theory to model this adversarial interaction
and to determine the best way to use honeypots against a
well-informed attacker. We introduce a novel game-theoretic
model of network hardening using honeypots that extends the
existing line of Stackelberg security games [Tambe, 2011] by
combining two elements: (1) we adopt a compact representa-
tion of strategies for attacking computer networks called at-
tack graphs, (2) the defender uses deception instead of di-
rectly allocating resources to harden targets.

Attack graphs (AGs) can represent a rich space of se-
quential attacker actions for compromising a specific com-
puter network. AGs can be automatically generated based
on known vulnerability databases [Ingols et al., 2006; Ou et
al., 2006] and they are widely used in the network security
to identify the minimal subset of vulnerabilities/sensors to
be fixed/placed to prevent all known attacks [Sheyner et al.,
2002; Noel and Jajodia, 2008], or to calculate security risk
measures (e.g., the probability of a successful attack) [Noel
et al., 2010; Homer et al., 2013]. We use AGs as a compact
representation of an attack plan library, from which the ratio-
nal attacker chooses the optimal contingency plan to follow.
However, finding the optimal attack plan in an attack graph
is an NP-hard problem [Greiner et al., 2006]. We address
this issue by translating attack graphs into an MDP and in-
troducing a collection of pruning techniques that reduce the
computation considerably.

Deploying honeypots changes the structure of the network
and increases uncertainty for the attacker. In this game model
we assume that the attacker knows the number of deployed
honeypots and their type (e.g., a database server). However,
the attacker does not know which specific hosts are honeypots
and which are real. While the assumption that the attacker
knows the number/type of honeypots is strong, it corresponds
to a worst-case, well-informed attacker. Our model could also
be extended to include uncertainty about these variables, but
it would further increase the computational cost of solving the
model.

We present five main contributions: (1) a novel game-
theoretic model of security hardening based on attack graphs,
(2) algorithms for analyzing these games, including fast
methods based on MDPs for solving the attacker’s planning
problem, (3) a case study analyzing the hardening solutions

for sample networks, (4) empirical evaluation of the com-
putational scalability and limitations of the algorithms, and
(5) sensitivity analysis for the parameters used to specify the
model.

2 Network Hardening Game Using Honeypots
In this section we introduce a game-theoretic model for the
network hardening problem. Our model is a Stackelberg
game, where the defender acts first, taking actions to harden
the network by adding honeypots (HPs). The attacker is the
follower that selects an optimal attack plan based on (lim-
ited) knowledge about the defender’s strategy. In particular,
we assume that the attacker learns the number and type of
HPs added to the network, but not which specific hosts are
real and fake.

An instance of the game is based on a specific computer
network like the one shown in Fig. 1c (based on [Homer et
al., 2009]). A network has a set of host types T , such as
firewalls, workstations, etc. Two hosts are of the same type
if they run the same services and have the same connectivity
in the network (i.e., a collection of identical workstations is
modeled as a single type). All hosts of the same type present
the same attack opportunities, so they can be represented only
once in an attack graph. During an attack, a specific host of a
given type is selected randomly with uniform probability.

More formally, a computer network y ∈ NT contains yt
hosts of type t ∈ T . The defender can place up to k hon-
eypots into the network y, so his actions are represented by
x ∈ X ⊂ NT

0 with ∑t∈T xt ≤ k, specifying that xt hosts type
t ∈ T will be added to the network as honeypots (e.g., by du-
plicating the configurations of the real hosts with obfuscated
data). The modified network consists of zt = xt + yt hosts of
type t. Adding more HPs of a specific type increases the like-
lihood that the attacker who interacts with this type of host
will choose a HP instead of a real host. If the attacker inter-
acts with a HP during an attack, he is immediately detected
and the attack ends. The attacker is rational and maximizes
the expected utility taking into account the probabilities of
interacting with HPs, his actions’ costs and success proba-
bilities, and rewards from successful attacks. He selects his
attack strategy from set Ξ defined later. Installing and main-
taining HPs has a cost for the defender depending on the host
type (c(t) t ∈ T) that is duplicated. The defender minimizes
his total expected loss l which consists of (1) the expected
loss for the attacked hosts and (2) the cost for adding the HPs
into the network. The Stackelberg equilibrium is found by
selecting the pure action of the defender that minimizes the
expected loss under the assumption that the attacker will re-
spond with an optimal attack [Conitzer and Sandholm, 2006].
If the attacker is indifferent between multiple attacks, it is typ-
ical to break ties in favor of the defender [Tambe, 2011]. The
defender’s action is

x∗ = argmin
x∈X
{l(x,argmax

ξ∈Ξ
{E(ξ ,x)})}. (1)

The minimization over all defender actions is performed
by systematically checking each option; however, the main
computation burden of computing the optimal attack strat-
egy is substantially reduced by caching and reusing results

of subproblems that are often the same. Computation of this
equilibrium relies on computing the optimal attack policy as
explained in the following section.

3 Attack Graphs and Attacker’s Strategies
There are multiple representations of attack graphs common
in the literature. We use dependency attack graphs, which
are more compact and allow more efficient analysis than the
alternatives [Obes et al., 2013]. Fig. 1a is an example attack
graph with high-level actions for illustration. Formally, it is
a directed AND/OR graph consisting of fact nodes F (OR)
and action nodes A (AND). Every action has preconditions
(pre(a)⊆F) – a set of facts that must be true before the action
can be performed – and effects (eff(a)⊆F) – a set of facts that
become true if the action is successfully performed. These
relations are represented by edges in the attack graph. We
use the common monotonicity assumption [Ammann et al.,
2002; Ou et al., 2006; Noel and Jajodia, 2004] that once a
fact becomes true during an attack , it can never become false
again as an effect of any action.

Every action has associated a probability of being per-
formed successfully pa ∈ (0,1], and cost ca ∈ R+ that the
attacker pays regardless of whether the action is successful.
The costs represent the time and resources for the attacker to
perform the action. Finally, every action a interacts with a set
of host types τa ⊆ T . The first time the attacker interacts with
a type t, a specific host of that type is selected with uniform
probability. Future actions with the same host type interact
with the same host. There is no reason to interact with a dif-
ferent host of the same type because (1) rewards are defined
based on the types, so there is no additional benefit, and (2)
interacting with another host increases the probability of in-
teracting with a honeypot and ending the game. Each fact
f ∈ F has associated an immediate reward r f ≥ 0 that the at-
tacker receives when the fact becomes true (e.g., an attacker
gains reward by gaining access to a particular host or compro-
mising a specific service). At any time we allow the attacker
to terminate his attack by a stop action denoted T.

An illustrative example of attack graph is depicted in
Fig. 1a. Diamonds and rectangles are fact nodes that are ini-
tially false and true. Actions (rounded rectangles) are de-
noted with a label and a triple (pa,ca,τa). The attack pro-
ceeds in a top-down manner. At the beginning the attacker
can perform actions Exploit-Firewall, Send-MW-Email or
Create-Dictionary. The action Exploit-Firewall’s precondi-
tions are {Firewall-Access, Firewall-Vulnerable} and its ef-
fect is {Net-Access}. If this action is performed, the at-
tacker immediately pays cost ca = 5, interacts with host types
τa = {2}, and with probability pa = 0.27 the action’s effects
become true. In that case the attacker obtains reward +100.

Attack graphs can be automatically generated by various
tools. We use the MulVAL [Ou et al., 2005], which constructs
an attack graphs from information automatically collected by
network scanning tools, such as Nessus1 or OpenVAS2. Pre-
vious works (e.g., [Sawilla and Ou, 2008]) show that the in-
formation about the costs and success probabilities for differ-
ent actions can be estimated using the Common Vulnerability

1http://www.nessus.org 2http://www.openvas.org

Access DB
+1000

Remote Exploit
(0.45,5,{1})

Pwd Brute Force
(0.21,9,{1})

Database
Vulnerable

Net Access
+100 Dictionary

Exploit Firewall
(0.27,5,{2})

Send MW Email
(0.23,2,{3})

Create Dictionary
(1.0,11,{})

Firewall
Vulnerable

Firewall
Access

Address
Available

Personal
Data

(a) Attack graph

T

Exploit Firewall
170

Remote Exploit
550

+100

T

Create Dictionary
190

Pwd Brute Force
201

T T

+1000

T

+1000

Send MW Email
279

Remote Exploit
550

+100

T

Create Dictionary
190

Pwd Brute Force
201

T T

+1000

T

+1000

(b) Attack policy

Internet

Server
(1,0,0)

Firewall

VPN
(1,0,0)

Database
(1,0,0)

20x
(1,0,1)

4x
(1,0,1) ...

4x
(1,0,1)

(c) Case study network

Internet

Firewall

Database(i,0,0)

Workstation(0,0,i)

(d) Local

Internet

(1,0,1)

(1,0,0)

(0,0,1) (0,0,1)

(e) Local+

Figure 1: (a) Attack graph representing the possible ways of gaining an access to the database. (b) Optimal attack policy for
the attack graph in (a); (c,d,e) network topologies with triples (r,l,c) at hosts denoting number of remote (r), local (l) and client
(c) vulnerabilities at that host.

Scoring System [Mell et al., 2006] values available in the Na-
tional Vulnerability Database [Bacic et al., 2006], historical
data, red team exercises, or be directly specified by the net-
work administrator.
Optimal attack policy In order to fully characterize the at-
tacker’s reaction to the set of honeypots, we need to compute
a full contingent attack policy, which defines an action for
each situation that may arise during an attack. This allows
identifying not only the actions likely to be executed by a ra-
tional attacker, but also the order of their execution. This is
necessary to evaluate effectiveness of placing honeypots or
any other intrusion detection sensors. Linear plans that may
be provided by classical planners (e.g., [Obes et al., 2013;
Boddy et al., 2005]) are not sufficient as they cannot repre-
sent attacker’s behavior after action failures.

The attack strategies Ξ are all contingent plans consistent
with the attack graph. The optimal attack policy maximizes
attacker’s expected utility and in case of ties favors the de-
fender. Fig. 1b depicts the optimal attack policy for the attack
graph in Fig. 1a without any honeypots. Nodes represent sug-
gested actions to perform with their expected rewards if strat-
egy is followed. The first action suggested by this policy is to
Send-MW-Email. If the action is successful, the attacker im-
mediately obtains reward +100 for reaching Net-Access and
follows the right (sub)policy (solid arc). If Send-MW-Email
fails, attacker’s best choice is to perform Exploit-Firewall and
expect reward 170. The attack terminates (T) if there are no
actions to perform or the expected rewards do not surpass the
costs of the actions.

4 Solving AG using MDP
In the Stackelberg game model we assume that the attacker
observes the defender’s strategy, which can be used in com-
puting the best-response attack strategy. We represent the
problem of computing the attacker’s best response as a finite
horizon Markov Decision Process (MDP) [Bellman, 1956].
The MDP for attack graph AG is defined as a tuple 〈B,S,P,ρ〉,

where: (1) B = A∪{T} is the set of actions, (2) S is set of
states s = (αs,φs,τs), where: αs ⊆ B is the set of actions
that a rational attacker can still perform, φs ⊆ F is the set
of achieved facts, and τs ⊆ T is the set of host types that the
attacker has interacted with so far. The initial MDP state is
s0 = (B, /0, /0). (3) Pa

ss′ ∈ (0,1] is the probability that perform-
ing action a in state s leads to state s′. Performing action a
can lead to one of three possible outcomes: either (i) a inter-
acts with a honeypot with probability h = 1−∏t:τa\τ(

zt−xt
zt

)
and his attack immediately ends; (ii) action a does not interact
with a honeypot and is successful with probability pa(1−h)
or (iii) action a does not interact with a honeypot and nei-
ther is successful with probability (1− pa)(1− h).The sets
defining the newly reached state are updated based on these
outcomes. Finally, (4) ρa

ss′ is the attacker’s reward for per-
forming action a in state s leading to s′. It is based on the set
of facts that became true, the action cost ca and interaction
with a honeypot.

We compute the optimal policy in this MDP using back-
ward induction based on depth-first search, with several en-
hancements to speed up the search. A major performance
enhancement is dynamic programming. Since the same states
in the MDP can often be reached via more than one sequence
of actions, we cache the expected rewards and corresponding
policies of the visited states and reuse it when possible. In
addition we use the following pruning techniques.

Sibling-Class Pruning
In this section we introduce the Sibling-Class Theorem (SCT)
and its use to prune the search tree. This theorem states that
in some cases, the optimal order for executing actions can be
determined directly without search. It was proved in [Greiner
et al., 2006] in the context of “probabilistic AND-OR tree
resolution” (PAOTR). In [Buldas and Stepanenko, 2012], the
AND part of the theorem is proven in the context of simpli-
fied attack graphs. Both works assume that actions have no
preconditions, i.e., the inner nodes of the AND/OR tree rep-
resent only the conjunctions and disjunctions and do not have

Explit Firewall

...

pa(1-h)

...

(1-pa)(1-h)

T

h

Send MW Email

...

pa(1-h)

...

(1-pa)(1-h)

T

h

Create Dictionary

...

pa(1-h)

...

(1-pa)(1-h)

T

h

(a) Decision point

Figure 2: An MDP decision point for AG from Fig. 1a.

any costs or probabilities of success. Moreover, the theorem
was proven only for the special case of trees not for directed
acyclic graphs. We generalize the SCT to handle the more
general case that we need for our attack graphs.

Actions a,b ∈ A belong to the same OR-sibling class iff
they have the exact same effects. Actions α ⊆ A belong to the
same AND-sibling class iff there is a “grandchild” action g ∈
A that can be executed iff all of the actions in α are successful
and none of the actions has an effect that would help enable
other actions, besides g. We define the R-ratio of actions in
sibling classes as R(a) = pa

ca
if a belongs to an OR-sibling

class; and R(a) = 1−pa
ca

if a belongs to an AND-sibling class.

Theorem 1 (Sibling class theorem) Let ξ be the optimal at-
tack policy for the attack graph AG. Then for any actions x,y
from the same sibling class, such that R(y)> R(x), x is never
performed before y in ξ .

Intuitively, in OR-sibling class, it is reasonable to start with
the high probability low cost actions. In AND-sibling class, it
is reasonable to start with cheap actions that have low success
probability to fail fast and avoid paying unnecessary costs.
Due to limit constraints, the theorem is formally proven in
the extended version of this paper. Unfortunately, actions that
can interact with honeypots violate the monotonicity property
assumed in the proof of SCT. These actions cannot be pruned
neither preferred to other actions. Thus, we prune only ac-
tions that do not interact with honeypots, belong to exactly
one sibling class and there is another action in the same sib-
ling class with higher R-ratio.

Branch and Bound
We compute lower (LB) and upper (UB) bounds of the ex-
pected reward in each MDP state. Consequently, we use them
to prune the MDP subtrees if they are provably suboptimal.

Lower bounds are computed from the values of the pre-
viously computed MDP subtrees and bound the future MDP
subtrees. First, we present necessary properties of the optimal
attack policy.

Proposition 1 Let ξ be the optimal attack policy in state s
starting with action a, ξ+ and ξ− be its (sub)policies if ac-
tion a succeeds or fails, respectively, and E[ξ] be the value of
the policy. Then, (i) E[ξ+]+ρ − ca/pa ≥ E[ξ−], where ρ =
∑ f :eff(a)\φ r f is an immediate reward and (ii) E[ξ]≥ E[ξ−].

In Fig. 2a is the first decision point for the attack graph
in Fig. 1a, where the attacker decides among three avail-
able actions: (Exploit-Firewall, Send-MW-Email or Create-
Dictionary). In every decision point of the MDP’s depth-first
search tree we explore each of its subtrees one by one and use
maximal value M of the previous actions as a lower bound

value for next action. Since every action’s outcome (success
or fails) is explored separately, we bound them individually.
Action a’s successful branch is bounded by M−ρ + ca/pa,
which results from Prop. 1(i). Its false branch is bounded
by M+ca−pa(E[a+]+ρ)

1−pa
, where E[a+] is the action a’s success-

ful branch’s expected reward, which results from Prop. 1(ii).
Extended version of the paper contains the proof and bound
derivations.

We compute the upper bound as the expected reward of
the optimal policy in an attack graph relaxed in two ways.
First, we ignore the action costs (ca = 0) and the probabilities
of touching HPs (h = 0). This only improves the expected
utility of the attack and causes the optimal strategy to always
use all available actions. Therefore, we can compute the ex-
pected reward of the policy by computing the probability that
each fact is achieved if the attacker attempts all actions. In or-
der to compute this probability efficiently, we run a depth first
search in the attack graph from each fact which provides a re-
ward, traversing edges only in the opposite direction. More-
over, to avoid complications caused by cycles, we disregard
edges leading to AND nodes from already traversed parts of
the attack graph. Removing edges to AND nodes can always
only increase the probability of reaching the reward fact.

5 Experiments
The experiments analyze the algorithm for optimal attack pol-
icy computation and evaluate game models for network hard-
ening problems. All experiments were run on one core of
Intel i7 3.5GHz processor with 10GB memory limit. Attack
graphs for the experiments were generated with MulVAL [Ou
et al., 2005] tool, augmented with additional cost and proba-
bility information.

Network topologies for experiments are depicted in Fig. 1c
(Main-i), 1d (Local-i) and 1e (Local+i), where i is: (i) number
of workstation client vulnerabilities in Local-i , (ii) number
of workstations in Local+i and (iii) number of workstation
groups in Main-i. Host types are labeled with (r, l,c), where
r,l,c denotes the numbers of remote, local and client vulner-
abilities for that type. The topology of the network and the
number and type of vulnerabilities determines the number of
actions in the attack graph.

5.1 Optimal Attack Planning
Pruning Techniques
In this section we evaluate the contribution of the pruning
techniques: Sibling Theorem (ST), lower bound (LB), and
upper bound (UB) for the branch and bound. Since tech-
niques may prune the same branches, we measure each tech-
nique’s contribution by measuring the algorithms slowdown
after disabling it. Thus, we compare 5 settings: none (no
techniques is used), all (all techniques are used), -ST (all but
ST), -LB (all but LB) and -UB (all but UB). Fig. 3 shows opti-
mal attack policy computation times of networks Local-i and
Loca+i using each technique setting. In Local-i network we
add vulnerabilities to the workstation, creating large decision
points. However, ST can effectively prune them and choose
the best action (compare all to -ST). In Local+i network the

10^0

10^1

10^2

10^3

10^4

10^5

 2 4 6 8 10 12 14 16

ti
m

e
 [
m

s
]

problem number

none
-LB
-UB
-ST

all

(a) Local-i

10^0

10^1

10^2

10^3

10^4

10^5

 1 2 3 4 5 6 7

ti
m

e
 [
m

s
]

problem number

none
-LB
-UB
-ST

all

(b) Local+i

Figure 3: Time comparison of the pruning techniques. Leg-
end: none - no pruning technique, (-LB) - all but lower bound,
(-UB) - all but upper bound, (-ST) - all but Sibling Theorem,
(all) - all pruning techniques.

Problem # A DP UID SPUDD
Local3 9 <1 <1 <1

Local11 25 <1 (OoM) 3
Local19 41 <1 (OoM) 3348
Local+3 16 <1 71 1
Local+6 28 3 (OoM) 125
Local+8 36 406 (OoM) 1951

host 1 2 3 5
db 0 0 1 2
srv 1 1 1 2
vpn 0 1 1 1
1grp 0 0 0 0
2grp 0 0 0 1

(a) (b)

Table 1: (a) Computation times (in seconds) of computing
optimal attack policies by DP, GUIDO and SPUDD. (OoM)
- Out of Memory, (Err) - planner exited with segmentation
error. (b) Optimal allocation of different number of HPs
(columns) to the host types (rows) in the Main-7 network.

branch and bound helps the most (-LB and -UB). In the re-
maining of experiments, we include all techniques since they
do not have negative impact and can dramatically speed up
the computation. We refer to the proposed attack planning
algorithm as DP (dynamic-programing).

Comparison with Other Algorithms
We compare DP to other two approaches that can compute the
optimal policy for an attack graph. The first method converts
the AG it to an Unconstrained Influence Diagram (UID) as
described in [Lisý and Pı́bil, 2013] and uses GUIDO [Isa et
al., 2007] to solve it. The second approach translates AG to a
probabilistic planning domain problem, which is then solved
by SPUDD [Hoey et al., 1999]. It uses iterative value com-
putation and was 3rd best planner in 2011 at the International
Planning Competition (IPC) in the MDP track. We chose
SPUDD because it guarantees to return an optimal contin-
gency policy, while the first two planners from IPC do not.
In Tab. 1(a) we present computation times of the algorithms.
Our algorithm dramatically outperforms the other two ap-
proaches, where the hardest network Local+8 was solved 5x
faster than using SPUDD planner.

5.2 Network Hardening Game Analysis
In this section we evaluate the network hardening. We fo-
cus on a typical small business network topology depicted in
Fig. 1c (Main-i) and we find honeypot deployment that min-
imizes the defender’s loss in this network. Attacker’s actions
costs in AG are set randomly between 1 and 100. The re-
wards for compromising the host types are 1000 for worksta-
tions (ws), 2000 for vpn, 2500 for server (srv) and 5000 for

database (db). For simplicity, we assume that the defender
values (lt) them the same as the attacker. However, this pay-
off restriction is not required in our model. The defender pays
chp(t) = γlt for adding honeypot of type t, where γ ∈ [0,1] is
parameter we alter. It corresponds to the fact that more valu-
able hosts are generally more costly to imitate by honeypots.

Scalability Experiment
We analyze the scalability of our game model to determine
the size of the networks that can reasonably be solved using
our algorithms. For each network Main-i, we create a game
model and find Stackelberg equilibrium. In Fig. 4a we present
computation times (note log-scale y-axis) to solve networks
Main-6 through Main-8 (individual plots), given the number
of HPs that the defender can deploy. The algorithm scales
exponentially with both parameters. However, we note that
typical real-world cases will have few honeypots.

5.3 Case-Study
In this section we examine in detail the network Main-7 with
γ = 0.02. We analyze the defender’s loss dependence on
the number of honeypots and his relative regret for modeling
the attack graph inaccurately (e.g., if he estimates the action
costs, action probabilities or rewards incorrectly).

Defender’s loss
Using a large number of HPs is not necessarily beneficial for
the defender as they may cost more than they contribute to
protecting the network. The defender’s expected loss using
different number of the HPs is shown in Fig. 4b (see “optimal,
γ = 0.02”), where it is optimal to deploy 6 HPs for γ = 0.02
and for 9 HPs for the cheaper γ = 0.01 setting. In the same
figure, we also present the defender’s loss for deploying ran-
dom honeypots instead the optimal suggested by our model,
which is roughly twice as bad. We also note how dramati-
cally merely 3 HPs can decrease the expected loss using the
game-theoretic approach.

In Fig. 4c are separate parts of the defender’s loss: the ex-
pected loss for having the hosts attacked and the costs for de-
ploying the HPs. Interestingly, with 16 HPs the defender de-
cides to use less expensive HPs and put the network in higher
risk, since this choice results in a lower overall expected loss.

In Tab. 1(b) we present the defender’s optimal HP types al-
locations (rows) for a given total number of deployable HPs
(columns). I.e., with one HP, it is best to duplicate the server
(srv). The server is not the most valuable type (2500 while
the database is worth 5000). However, it is a bottleneck of
the network; protecting the server partially defends both the
server and the database, rather than only database. With two
HPs it is best to duplicate the server and VPN (again, the bot-
tlenecks). Only with the 3rd HP does the defender duplicate
the database.

Sensitivity Analysis
Computing the defender’s optimal strategy heavily relies on
the Attack Graph structure and knowledge of the action costs,
probabilities and rewards, which the defender can only ap-
proximate in a real-world scenarios. In the following exper-
iments we analyze the sensitivity of the defender’s strategy
and utility to inaccurate approximation of the attack graphs.

 0.1

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12 14 16 18 20

c
u

m
u

la
ti
v
e

 t
im

e
 [

s
]

of honeypots

6 Types
7 Types
8 Types

(a) Scalability

400

600

800

1000

1200

1400

1600

1800

2000

0 2 4 6 8 10 12 14 16 18 20

de
fe

nd
er

 e
xp

ec
te

d
lo

ss

of honeypots

optimal,γ=0.01
optimal,γ=0.02
random,γ=0.02

(b) Defender’s loss

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 2 4 6 8 10 12 14 16 18 20

de
fe

nd
er

 e
xp

ec
te

d
lo

ss

of honeypots

Attack cost
Honeypot cost

(c) Defender’s costs

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

de
fe

nd
er

s
re

la
tiv

e
re

gr
et

δc,δp,δr

1 HP
3 HPs
6 HPs

95%ile of 6 HPs

(d) Sensitivity

Figure 4: (a) Time comparison of solving the game for various networks and the number of HPs; (b) Defender’s expected
loss given the γ and allocating HPs optimally and randomly. (c) Individual parts of the defender’s loss: the expected cost of
having the network attacked (Attack cost) and cost of deploying the HPs (Honeypot cost). (d) Defender relative regret given the
perturbation of action costs, success probabilities and rewards in networks with 1, 3 and 6 HP, and 95th percentile for 6 HPs.

We use the following notation: defender’s strategy d̄ (resp.
loss l̄d̄) is computed from the attack graph known to the de-
fender, which imprecisely approximates the attack graph truly
describing attacker’s behavior; d (resp. loss ld) is the optimal
strategy based on the true attack graph according which the
attacker really behaves; and ld̄ is the defender’s loss when
strategy d̄ is used against the real attack graph.

In the sensitivity analysis we compute the relative regret
as regret = |ld̄ − ld |/l̄d̄ , which is the defender’s relative loss
ratio for not knowing the attacker’s real attack graph. In
other words, if the defender knew the true attack graph model
and acted optimally, this is how much he would gain. Thus,
regret = 0 means he has no regret and regret = 1 means that
his loss is by 100% greater than it could have been.

In this experiments the attack graph action probabilities
and costs were chosen randomly from the intervals pa ∈
[0,1], ca ∈ [0,200] in order not to depend on the specific
initial attack graph values provided by MulVAL. To gen-
erate the imprecise attack graph available to the defender,
we perturbed the generated attack graph based on values
(δp,δc,δr) ∈ [0,1]3, where each value represents the limit
on the size of the perturbation on action probabilities (δp),
costs (δc) and fact rewards (δr). The perturbed attack graph
is obtained as follows: for each action a ∈ A the perturbed
probability p̄a is chosen from an interval [pa− δp, pa + δp]
restricted to [0.05,0.95] to prevent them becoming impossi-
ble (p̄a = 0) or infallible (p̄a = 1); perturbed cost c̄a is chosen
from [ca(1−δc),ca(1+δc)]; and for each fact f ∈ F , the per-
turbed fact reward is r̄ f ∈ [r f (1− δr),r f (1+ δr)], where the
values are selected uniformly within the given intervals. Ac-
tion probabilities are perturbed absolutely (by ±δp), but the
costs and rewards are perturbed relative to their original value
(by ±δcca and ±δrr f). The intuition behind this is that the
higher the cost or reward values the larger the errors the de-
fender could have made while modeling them, which cannot
be assumed for probabilities.

In our experiments we perturbed the each component from
0.05 to 0.95 by 0.05 steps and measured the defender’s loss.
The results presented are mean values computed from 100
runs. In Fig. 4d we present the defender’s relative regret for
increasing error perturbations for deploying 1, 3 and 6 HPs,
where we perturbed all three perturbation components. The
results show the solutions are fairly robust, i.e., assuming that

the defender models all components inaccurately by at most
30% (δc = δp = δr = 0.3) in scenario with 6 HPs, his HP de-
ployment choice could have been better off by only 17%. We
also examined the effect of perturbing each component indi-
vidually, however, due to the space limit, we did not include
figures (which are similar). Out of the three components, the
defender’s strategy was most sensitive to action probability
perturbations, where the relative regret reaches value 0.8 for
the case when δp = 0.95 for 6 HPs. The sensitivity to re-
ward perturbations reached relative regret loss of about 0.3 for
δr = 0.95. Results were least sensitive to action cost pertur-
bations, resulting in relative regret loss below the value 0.002
even for δc = 0.95. Fig. 4d also presents the 95th percentile
of the regret values for the case with 6 HPs to show the ro-
bustness in extreme cases.

Note that with an increasing number of HPs, the defender’s
relative regret grows (e.g., Fig. 4d), however, this can be mis-
leading. Further data analysis revealed that the actual abso-
lute regrets |ld̄− ld | for 3 HPs (318) and 6 HPs (340) are very
similar. The reason why relative regret seem to grow with the
increasing number of HPs is due to the decrease of the ob-
served loss l̄d̄ (denominator it relative regret formula). The
observed loss l̄d̄ for 3 HPs is 1994, while for 6 HPs 1049,
which shows that the relative regret does not seem to depend
on the number of HPs.

6 Conclusion
We introduce a game-theoretic model for the network hard-
ening problem. The defender seeks an optimal deployment
of honeypots into the network, while the attacker tries to at-
tack the network and avoid the interaction with the honeypots.
Our model provides a novel combination of using compact
representation of the strategies of the attacker in the form of
attack graphs, and using deception by the defender. By trans-
lating the attack graphs into MDPs and employing a number
of pruning techniques, we are able to solve problems of re-
alistic size and analyze the results for realistic case studies.
Moreover, we showed that our model produces robust solu-
tions even if the input data are imprecise.

Our work has significant potential for further research.
Since the majority of the required input data can be auto-
matically acquired by standard network scanning tools, or
extracted from existing vulnerability databases, the proposed

model can be deployed in real-world networks and evaluated
in practice. Secondly, our model can be further extended from
the game-theoretical perspective and use additional uncer-
tainty about the knowledge of the attacker, or model multiple
types of the attacker using Bayesian variants of Stackelberg
games.

Acknowledgments
This research was supported by the Office of Naval Research
Global (grant no. N62909-13-1-N256), the Danish National
Research Foundation and the National Science Foundation of
China (under the grant 61361136003) for the Sino-Danish
Center for the Theory of Interactive Computation. Ac-
cess to computing and storage facilities owned by parties
and projects contributing to the National Grid Infrastructure
MetaCentrum, provided under the programme “Projects of
Large Infrastructure for Research, Development, and Inno-
vations” (LM2010005), is greatly appreciated. Viliam Lisý is
a member of the Czech Chapter of The Honeynet Project.

References
[Ammann et al., 2002] Paul Ammann, Duminda Wijesekera, and

Saket Kaushik. Scalable, graph-based network vulnerability
analysis. In CCS, pages 217–224, 2002.

[Bacic et al., 2006] Eugen Bacic, Michael Froh, and Glen Hender-
son. Mulval extensions for dynamic asset protection. Technical
report, DTIC Document, 2006.

[Bellman, 1956] Richard Bellman. Dynamic programming and la-
grange multipliers. PNAS, 42(10):767, 1956.

[Boddy et al., 2005] Mark S Boddy, Johnathan Gohde, Thomas
Haigh, and Steven A Harp. Course of action generation for cyber
security using classical planning. In ICAPS, pages 12–21, 2005.

[Buldas and Stepanenko, 2012] Ahto Buldas and Roman Stepa-
nenko. Upper bounds for adversaries’ utility in attack trees. In
GameSec, pages 98–117. 2012.

[Cai et al., 2009] Jin-Yi Cai, Vinod Yegneswaran, Chris Alfeld, and
Paul Barford. An attacker-defender game for honeynets. In Com-
puting and Combinatorics, pages 7–16. Springer, 2009.

[Carroll and Grosu, 2011] Thomas E Carroll and Daniel Grosu. A
game theoretic investigation of deception in network security. Se-
curity and Communication Networks, 4(10):1162–1172, 2011.

[Conitzer and Sandholm, 2006] Vincent Conitzer and Tuomas
Sandholm. Computing the optimal strategy to commit to. In EC,
pages 82–90, 2006.

[Greiner et al., 2006] Russell Greiner, Ryan Hayward, Magdalena
Jankowska, and Michael Molloy. Finding optimal satisficing
strategies for and-or trees. Artificial Intelligence, pages 19–58,
2006.

[Grimes et al., 2005] Roger A Grimes, Alexzander Nepomnjashiy,
and Jacco Tunnissen. Honeypots for windows. 2005.

[Hoey et al., 1999] Jesse Hoey, Robert St-Aubin, Alan Hu, and
Craig Boutilier. Spudd: Stochastic planning using decision di-
agrams. In UAI, pages 279–288, 1999.

[Homer et al., 2009] John Homer, Xinming Ou, and David
Schmidt. A sound and practical approach to quantifying security
risk in enterprise networks. Kansas State University Technical
Report, pages 1–15, 2009.

[Homer et al., 2013] John Homer, Su Zhang, Xinming Ou, David
Schmidt, Yanhui Du, S Raj Rajagopalan, and Anoop Singhal.
Aggregating vulnerability metrics in enterprise networks using
attack graphs. Journal of Computer Security, pages 561–597,
2013.

[Ingols et al., 2006] Kyle Ingols, Richard Lippmann, and Keith Pi-
wowarski. Practical attack graph generation for network defense.
In ACSAC, pages 121–130, 2006.

[Isa et al., 2007] Jiri Isa, Viliam Lisy, Zuzana Reitermanova, and
Ondrej Sykora. Unconstrained influence diagram solver: Guido.
In IEEE ICTAI, pages 24–27, 2007.

[Lisý and Pı́bil, 2013] Viliam Lisý and Radek Pı́bil. Computing op-
timal attack strategies using unconstrained influence diagrams. In
PAISI, pages 38–46. 2013.

[Mell et al., 2006] Peter Mell, Karen Scarfone, and Sasha Ro-
manosky. Common vulnerability scoring system. Security &
Privacy, pages 85–89, 2006.

[Noel and Jajodia, 2004] Steven Noel and Sushil Jajodia. Manag-
ing attack graph complexity through visual hierarchical aggrega-
tion. In Proceedings of the 2004 ACM workshop on Visualization
and data mining for computer security, pages 109–118. ACM,
2004.

[Noel and Jajodia, 2008] Steven Noel and Sushil Jajodia. Optimal
ids sensor placement and alert prioritization using attack graphs.
Journal of Network and Systems Management, pages 259–275,
2008.

[Noel et al., 2010] Steven Noel, Sushil Jajodia, Lingyu Wang, and
Anoop Singhal. Measuring security risk of networks using attack
graphs. International Journal of Next-Generation Computing,
1(1):135–147, 2010.

[Obes et al., 2013] Jorge Lucangeli Obes, Carlos Sarraute, and Ger-
ardo Richarte. Attack planning in the real world. arXiv preprint
arXiv:1306.4044, 2013.

[Ou et al., 2005] Xinming Ou, Sudhakar Govindavajhala, and An-
drew W Appel. Mulval: A logic-based network security analyzer.
In USENIX Security, 2005.

[Ou et al., 2006] Xinming Ou, Wayne F. Boyer, and Miles A. Mc-
Queen. A scalable approach to attack graph generation. In CCS,
pages 336–345, 2006.

[Provos, 2004] Niels Provos. A virtual honeypot framework. In
USENIX Security Symposium, volume 173, 2004.

[Qassrawi and Hongli, 2010] Mahmoud T Qassrawi and Zhang
Hongli. Deception methodology in virtual honeypots. In Net-
works Security Wireless Communications and Trusted Comput-
ing (NSWCTC), 2010 Second International Conference on, vol-
ume 2, pages 462–467. IEEE, 2010.

[Sawilla and Ou, 2008] Reginald E. Sawilla and Xinming Ou. Iden-
tifying critical attack assets in dependency attack graphs. In
Sushil Jajodia and Javier Lopez, editors, Computer Security -
ESORICS 2008, volume 5283 of Lecture Notes in Computer Sci-
ence, pages 18–34. Springer Berlin Heidelberg, 2008.

[Sheyner et al., 2002] O. Sheyner, J. Haines, S. Jha, R. Lippmann,
and J.M. Wing. Automated generation and analysis of attack
graphs. In IEEE S&P, pages 273–284, 2002.

[Tambe, 2011] Milind Tambe. Security and Game Theory: Algo-
rithms, Deployed Systems, Lessons Learned. Cambridge Univer-
sity Press, 2011.

A Proofs
This appendix contains proofs of the propositions from the
“Optimal Network Security Hardening Using Attack Graph
Games” submitted to IJCAI 2015.

A.1 Sibling-Class Theorem for Attack Graphs
In this section we proof that Sibling Class Theorem may be
used for Attack Graphs.

Theorem 2 (Sibling class theorem) Let ξ be an optimal at-
tack policy for the attack graph AG. Then for any actions x,y
in the same sibling class, such that R(y) > R(x), x is never
performed before y in ξ .

The proofs for the AND and OR sibling classes are sym-
metric; hence, we focus only on the OR sibling class. The
proof of this theorem in [Greiner et al., 2006] relies on a
lemma about attack policies. If we denote a tree rooted in
action x with subtree ξ+ (when x is successful) and subtree
ξ− (when action fails) by (x;ξ+;ξ−) then the lemma can be
rephrased in the following way:

Lemma 1 Let x,y ∈ A be actions in the same OR-sibling
class of an attack graph such that R(y) > R(x). Let ξxy
be an optimal policy for the attack graph in the form
(x;ξ+;(y;ξ+;ξ−)), then ξyx = (y;ξ+;(x;ξ+;ξ−)) is a valid
policy with a higher expected reward than ξxy.

The proof of the Sibling class theorem in [Greiner et al.,
2006] works by induction on the number of attack actions in
the optimal policy. It is demonstrated on Figure 5 taken form
the article. For contradiction, assume that there are actions x
and y in the wrong order in the optimal attack policy. Without
loss of generality, assume a case with an action x in the root
of the policy and its sibling y at several places in the nega-
tive branch of x (Figure 5(a)). The positive branch does not
include y, because it is an OR-sibling of x, which means that
the fact achieved by y is already achieved by x, if it is success-
ful. The proof shows that the expected reward of the policy
is not decreased if it starts as the negative branch of x and
action x is executed just before action y would be executed
in the original policy (Figure 5(b)). Then the proof uses the
Lemma 1 to show that if each instance of the actions x and y
are switched (Figure 5(c)), the expected reward of the policy
is increased if the R-ratio of y is higher then R-ration of x.
We argue that a very similar proof is applicable for the more
general case of attack graphs defined above. The differences
between the model in [Greiner et al., 2006] and our model
are:

i) The attack graph is in general a cyclic graph and not a tree.

ii) The attack graph has actions with a probability of success
and costs in the inner nodes, and not only in the leaves.
This creates preconditions for the actions.

iii) Different attacks give different rewards and it is not nec-
essary to resolve the root node of the attack graph.

iv) The attack terminates when the expected cost of contin-
uing the attack is higher than the expected reward, not
when the root of the AND-OR tree is resolved.

The proof is based on properties of the optimal policy with
very little reference to the structure of the AND-OR graph.
The only use of the AND-OR graph is to assure that after the
transformations, the policy is still a legal policy. From the
definition of the sibling classes, any action that belongs to a
sibling class is a leaf of the attack graph. It does not have
any preconditions and it can be executed at any place in the
policy. The inner nodes of the attack graph are not moved in
the tree and the transformations preserve any preconditions
the following actions might have. This means that properties
(i) and (ii) do not have any effect on validity of the proof.

The policy in [Greiner et al., 2006] does not have any re-
wards, only costs for the actions. The proof assumes that each
subtree of the policy has an expected cost of execution, but it
never requires the costs of the sub-trees to be positive. We can
define the expected reward (or negative cost) of a leaf node T
as the sum of the rewards acquired in the attack branch from
the root to the leaf. Afterwards, we can treat this leaf as any
other subtree in the proof. This resolves difference (iii).

The last difference between the models is caused by chang-
ing the point when the attack stops. The attack stops at node
T if the expected value of the optimal sub-policy continuing
from this node is negative. This is a solely a property of the
successors of a node in the policy tree. The transformations
used in the proof do not change which actions can be executed
below a current leaf in the policy and they do not change
what other facts can be activated below the current leaves.
Therefore, it cannot be optimal to prolong any branch after
the transformations. Furthermore, no attack would be termi-
nated earlier due to the transformations. The attacker stops an
attack if the expected reward of some subtree would become
negative. The proof initially assumes an optimal strategy and
shows that the expected reward of the strategy stays the same
when x is moved just before y. If the expected cost of play-
ing the subtree rooted at the new position of x were positive,
stopping the attack at that place would increase the reward
of the whole strategy, which contradicts the optimality of the
original strategy. The same holds after switching the posi-
tions of x and y. The original proof states that the reward is
increased when the two are switched. If in addition, some of
the subtrees would have negative expected reward after the
switch. Removing the subtree would increase the expected
reward even more, which still means that the original strategy
was suboptimal.

A.2 Propositions and Lower Bounds
In this section we proof used propositions and lower bounds.
We begin with the necessary propositions.

Proposition 2 Let ξ be an optimal attack policy starting with
action a, E[ξ] be the expected cost of the policy ξ and E[ξ+]
(resp. E[ξ−]) be the expected cost of subpolicy ξ after action
a succeeds (resp. fails). Then E[ξ]≥ E[ξ−].
Proof 1 The first part we prove by contradiction. Assume
that E[ξ]<E[ξ−]. Then, due to the monotonicity property the
attacker could have followed the (sub)policy ξ− before per-
forming action a, which would have saved him the cost of the
action ca. This new policy would have had higher expected
value than the policy ξ , which contradict the optimality of ξ .

Figure 5: Illustration of the proof of the sibling theorem

Proposition 3 Let ξ be the optimal attack policy starting
with action a, E[ξ] be the expected cost of the policy ξ and
E[ξ+] (resp. E[ξ−]) be the expected cost of subpolicy ξ after
action a succeeds (resp. fails). Then E[ξ+] + ρ − ca/pa ≥
E[ξ−], where ρ = ∑ f : fa\φ r f is an pure immediate reward re-
ceived if action a succeeds.
Proof 2 For convenience, we denote p̄a = 1− pa.

E[ξ] =−ca + pa(E[ξ+]+ρ)+ p̄aE[ξ−]
Prop. 2⇒ E[ξ−]≤−ca + pa(E[ξ+]+ρ)+ p̄aE[ξ−]

paE[ξ−]≤−ca + pa(E[ξ+]+ρ)

E[ξ−]≤−ca/pa +E[ξ+]+ρ.

Lower Bounds
In a decision point, the MDP search explores subtrees of all
applicable actions one by one. As each action subtree’s ex-
pected reward is computed, we can their results to bound the
future actions’ subtrees.
Proposition 4 Assume the actions a1, . . . ,ak+1 ∈ A to be in
the same decision point in state s = (α,φ ,τ) of the depth-
first search tree for MDP from which the subtrees of actions
a1, . . . ,ak have been explored with their maximal expected re-
ward M. Let ξ be the optimal attack policy starting with ac-
tion ak+1, E[ξ] be the expected cost of the policy ξ and E[ξ+]
(resp. E[ξ−]) be the expected cost of subpolicy ξ after action
a succeeds (resp. fails).

Strategy ξ starting with action ak+1 and followed optimally
has higher expected reward then strategies starting with ac-
tions a1, . . . ,ak+1 (and followed optimally) iff

E[ξ+]> M−ρ +
cak+1

pak+1

and
E[ξ−]>

M+cak+1−pak+1 (E[ξ+]+ρ)

1−pak+1
,

where ρ = ∑ f : fa\φ r f is the pure immediate reward for suc-
cessfully performed action a.
The proof of the first inequality:
Proof 3

E[ξ] =−cak+1 + pak+1(E[ξ+]+ρ)+ p̄aE[ξ−]> M

−cak+1 + pak+1(E[ξ+]+ρ)+ ¯pak+1(E[ξ+]+ρ−
cak+1

pak+1

)> M

E[ξ+]> M−ρ +
cak+1

pak+1

.

The proof of the second inequality:
Proof 4

E[ξ]> M
−ca + pa(E[ξ+]+ρ)+ ¯pak+1E[ξ−]> M

E[ξ−]>
M+cak+1−pak+1 (E[ξ

+]+ρ)

¯pak+1
.

