
1

Case Studies of Network Defense with Attack
Graph Games

Karel Durkota1, Viliam Lisý1,2, Christopher Kiekintveld3, Branislav Bošanský1, Michal Pěchouček1

1Artificial Intelligence Center, Dept. of Computer Science, FEE, Czech Technical University in Prague
{durkota,lisy,bosansky,pechoucek}@agents.fel.cvut.cz

2AICML, Dept. of Computing Science, University of Alberta
3Computer Science Department, University of Texas at El Paso

cdkiekintveld@utep.edu

Abstract—The increasing complexity of securing modern com-
puter networks makes decision support systems an important tool
for administrators. A challenge many existing tools fail to address
is that attackers react strategically to new security measures,
adapting their behavior in response. Game theory provides a
methodology for making decisions that take into account these
reactions, rather than assuming static attackers. We present an
overview of how game theory can be used to inform one type of
security decision: how to optimally place honeypots in a network.
We demonstrate this approach on a realistic case study, and
present initial validation results based on a study comparing our
approach with human decision makers.

Index Terms—Game theory, Network security, Attack graph

I. INTRODUCTION

Computer network security is an example of asymmetric,
strategic conflict between defenders and attackers. Attackers
perform a wide range of intrusion actions such as scanning
the network and exploiting vulnerabilities, while defenders
counter with actions such as intrusion detection and filter-
ing. Different defense mechanisms have varying costs and
effectiveness against specific types of attacks. Network ad-
ministrators face challenging decisions in how to assess the
effectiveness of security measures, and optimize how these
measures are selected and deployed. The initial effectiveness
may be mitigated in the long term, as attackers adapt to the
security measure, which makes the optimization even more
challenging.

Game theory provides a methodology for developing new
decision support tools that take into account the sophisticated
responses of attackers to a defense strategy. The key idea
is that rational attackers will respond to security, so we can
model the network defense problem as a two-player, multi-
stage game. Solving these models allows us to find an optimal
defense plan to mitigate attacks, and can also provide a quanti-
tative measure of the improvement in security. We demonstrate
this methodology for one specific type of defensive strategy:
deploying honeypots, which are fake hosts or services added
to the network. Honeypots act as decoys to distract attackers
from the real hosts, detect the presence of intruders, and gather
detailed information about the attacker’s activity.

Operating believable honeypots is expensive in terms of
hardware, software and administrator time for managing the

honeypot and analyzing data. In addition, there are many
different types of honeypots that could be used in any given
network. We describe a game-theoretic approach for optimiz-
ing honeypot deployments as a case study for how game theory
can be used to make network security decisions. We present a
case study on a realistic network to show the feasibility of this
methodology, and then present experimental results from an
initial validation study with human decision makers to evaluate
the game-theoretic strategies.

II. BACKGROUND

Honeypots are used by network administrators and security
researchers to detect and analyze attackers’ behavior and the
tools they use [7]. For example, the Honeynet Project provides
software and literature describing the knowledge acquired
about attackers. Companies use honeypots as intrusion detec-
tion systems (IDS), e.g., a hardware product called Canary by
Thinkst can emulate various operating systems. To effectively
use honeypots, network administrators must decide how many
to deploy (contingent on the cost), and where to place them
to make them attractive targets.

A. Game Theory

Game theory models decision-making problems with mul-
tiple decision makers (players) in a common, often partially
observable, environment. A game consists of (i) players, (ii)
strategies (actions) available to each player, and (iii) utilities
for each defender depending on the joint choices of all players.
The players may have (iv) incomplete information about
moves made by other players or the environment. The optimal
strategy for a player generally depends on the behavior of
the other players. Game theory provides a variety of solution
concepts and algorithms for analyzing games with different
characteristics.

We focus on two-player games where the administrator
(defender) chooses a honeypot allocation minimizing cost and
the expected loss caused by an attacker compromising the
network. The attacker chooses a strategy that maximizes the
value of attacking the network while avoiding honeypots and
minimizing costs. We use Stackelberg game models similar to
those used for physical security domains [8]. The defender acts

2

1:execCode(Database,Root)
+10000

2:Exploit Vulnerability
(0.4,5,Database)

3:Password Brute Force
(0.1,9,Database)

4:vulExists(Database,
'CVE-2010-0020',Windows_2000) 5:netAccess(Database,'139',TCP)

6:Exploit Vulnerability
(0.2,5,WebServer)

7:Exploit Vulenrability
(0.3,8,PC)

8:execCode(PC,User)
(0.8,2,PC)

9:vulExists(WebServer,
'CVE-2012-0572',MySql)

10:vulExists(PC,
'CVE-2013-0811',Internet_Explorer)

11:Browsing a
malicious website

Internet

WebServer

10xPC

Database

PC

Fig. 1: A network and an attack graph representing ways to gain access to the Database.

first, taking actions to harden the network by adding honey-
pots. The attacker then chooses the optimal attack plan based
on (limited) knowledge about the network and defender’s
strategy. Solving the game means computing a strategy for
each player, which describes an optimal (stochastic) action
choice in every possible situation.

B. Attack Graph

Attack graphs represent possible sequential attacker strate-
gies for compromising a specific computer network. They are
automatically generated based on known vulnerabilities [5]
and are used to identify the minimal subset of vulnerabili-
ties/sensors to be fixed/placed to prevent known attacks, to
calculate security risk measures [9], or to find the shortest
attack plan in penetration testing. We use AGs to compactly
represent possible attack plans (attacker strategies) in our game
models.

III. MODEL OVERVIEW

We model a network as a set of host-types, e.g., WebServer
or PC in Figure 1. Two hosts are of the same host-type if they
run the same services, have the same network connectivity, and
the same value. For example, a collection of workstations that
run the same OS image are modeled as the same type. Host-
type PC in Figure 1 has ten equivalent hosts, all of which
present the same attack opportunities. By representing each
type only once in the attack graph we can scale with the
number of unique types rather than individual hosts.

A. Defending

The defender places k honeypots into the network by du-
plicating the configurations of existing hosts (with obfuscated
data) or creating new host-types. The defender pays a cost
dependent on the host-type for each honeypot. Adding more
honeypots of a specific host-type increases the likelihood that
the attacker will interact with a honeypot instead of a real host.
If the attacker interacts with a honeypot during an attack, an

alert is sent to the defender who immediately stops the attack
or applies other countermeasures.

B. Attacking

We consider exploit actions that target a specific vulner-
ability in a host. Successfully executing an exploit results in
the attacker gaining privileged or non-privileged access to that
host.

An attack graph (AG) compactly represents all known
sequences of exploit actions for the host in the network. It
captures the dependencies between the exploit actions and
true/false facts that represent logical statement about the
network state. Figure 1 depicts a possible AG for the network.
Each action (rounded rectangular node) has preconditions
and effects, represented by incoming and outgoing edges,
respectively. All preconditions must be true to perform the
action. If an exploit action succeeds, then all its effects become
true and the attacker obtains rewards. Initially true facts are
represented with rectangle nodes, and initially false facts with
diamond nodes.

In Figure 1, action ”2:Exploit Vulnerability” has precondi-
tions: (Fact #4) vulnerability exists and (Fact #5) the attacker
can access the Database on port 139. If he successfully
performs the action, he will obtain root-privileges to the
Database (Fact #1) and reward +1,000. The success probability
is the likelihood that an exploit will succeed given that
all preconditions are met. The cost represents the attacker’s
monetary cost and effort for attempt to perform an action and
the consequences of possibly disclosing the exploit. Action #2
in Figure 1 has success probability 0.4 and cost 5.

We use MulVAL [5] to automatically construct AGs from
information collected by network scanning tools (i.e., Nessus
or OpenVAS). The action costs and success probabilities
can be estimated using the Common Vulnerability Scoring
System [4] or other data sources.

In our game models, the attacker chooses the optimal attack
policy that fully characterizes the attacker’s behavior at every
point during the attack. It specifies the order of the actions to

3

C
h

a
n

ce
D

e
fe

n
d

e
r

A
tt

a
ck

e
r

AP1 AP2 APn

(-120,150) (-200,220) (0,-100)

...

AP1 AP2 APn AP1 AP2 APn

(-190,250) (-50,0) (-350,390) (-100,140) (-30, 0) (-800,900)

... ...

...

1/3
1/3

1/3

L RM

I2 I3 I4I1
0 01 0 0.55 0.45 0.140.11 0.75

N
e
tw

o
rk

 1

N
e
tw

o
rk

 2

N
e
tw

o
rk

 3

N
e
tw

o
rk

 1
-L

N
e
tw

o
rk

 1
-M

N
e
tw

o
rk

 1
-R

N
e
tw

o
rk

 2
-L

N
e
tw

o
rk

 2
-M

N
e
tw

o
rk

 2
-R

N
e
tw

o
rk

 3
-M

N
e
tw

o
rk

 3
-R

L RM L RM

I-net

T

A
p=0.2

B
p=0.8

I-net

T

PC

PC
I-net

T

PC PC I-net

T

PC

PC

I-net

T

H H

PCPC I-net

T

H

H

PC

PC
I-net

T

H

H

PC

PC

I-net

T

PC

PC

H

H

I-net

T

PC

PC

H

H I-net

T

PC PC

H

H
I-net

T

PC PC

H

H
I-net

T

PC

PCH

H

I-net

T

PC

PC

H

HN
e
tw

o
rk

 3
-L

I5

Fig. 2: Game tree for a simple network with host-types A and B, with their attack success probabilities 0.2 and 0.8, respectively.
Chance plays uniformly into three possible networks, each contains two hosts. The defender chooses possible combinations of
allocating two honeypots in each possible network; the blue probability values is a possible defense strategy (OPTd discussed
in Section VI). The attacker selects attack policy AP1 through APn according to the networks’ attack graphs.

be executed by a rational attacker. The problem of computing
the optimal attack policy can be represented as a finite horizon
Markov Decision Process (MDP). We use domain-specific
MDP algorithms to find the optimal strategies [2].

IV. GAME MODEL

Honeypots in network security are a form of a deception.
We can model deception in games where one player has more
information about the game state than the other (e.g., network
structure, honeypot locations). Predicting the players’ behavior
is more difficult in these games because it depends on their
beliefs about the likelihood of possible states. We model the
honeypot allocation problem as an extensive-form game that
captures the attacker’s limited information about the network,
allowing for deception.

We assume that the attacker has prior beliefs about the
structure of the network. For example, he knows that in a
bank network there will certainly be some office computers, a
client database, and an internet banking backend, but he does
not know how many offices there are or if the bank uses a
VPN server. We refer to the part of the network known to the
attacker as the core of a network.

The attacker’s beliefs about possible networks can be rep-
resented by a Chance player who makes an initial random
move with probability corresponding to the attacker’s belief of
likelihood of each network, as shown in Figure 2. The attacker

is uncertain which of the possible extended networks (networks
after the Chance move) is the defender’s real network before
the defender added honeypots. We assume that the attacker’s
belief is a common knowledge (if not, the defender can
approximate it by analyzing the frequency of the networks
in the real-world). In our example, the core network (at the
Chance layer) consists of a gateway router and a target host T.
We model the attacker who knows that there are two additional
hosts, each either of host-type A or B, with equal probability.
Therefore, the chance player extends the core network by
adding possible combinations of host-types A and B, each
with probability of 1/3 (known to both players), which leads
to Networks 1-3.

The defender decides what honeypot host-types to add to
each extended network. Although the defender knows the
actual network, the strategy specifies the honeypots to add
to every possible network. We assume that the attacker knows
that the defender can add up to k honeypots, therefore, he must
reason about what the defender would do in each possible
situation. This creates an interesting information structure. If
the defender adds two honeypots to A in Network 1, which
results in Network 1-L, the attacker can be certain that two
out of four hosts in A are honeypots. However if the defender
adds one honeypot to A and one to B in Network 1 and two
honeypots to A in Network 2, the resulting Networks 1-R and
2-L look exactly the same to the attacker. When the attacker

4

observes this network, he cannot be certain if the host in B is
a honeypot or not. An information-set is the set of networks
that look the same to the attacker, in Figure 2 denoted by
dashed rectangles labeled as I1 through I5. The attacker must
play the same strategy for all networks in an information-set,
since they are indistinguishable. But in each information-set
the attacker may have different attack plans to choose from
(e.g., in Networks 1-L only host-type A can be attacked, while
in Network 3-R only host-type B). The defender controls the
attacker’s observations about the network to a large extent,
leading to the potential for deception and a complex decision
problem for the attacker.

We assume that the honeypot duplicate is indistinguishable
from the original host to the attacker. If the attacker performs
an attack on host-type A in Network 1-L, he has a 50%
chance of attacking the honeypot. Therefore, the attacker has
to weigh the probability of being detected against the expected
benefit of the successful attack and the cost of alternative
attacks. Each attack policy results in a potentially different
pair of utility values specified in the leaves of the game tree
(AP1 through APn in I5 in Figure 2). The first value is the
defender’s utility, which contains honeypot costs and expected
losses from attacks. The second value is the attacker’s utility,
which contains the expected reward, cost, and penalty for
being detected.

The defender’s strategy OPTd is shown in Figure 2 with
probabilities in blue color. The strategy prescribes the proba-
bility of playing each action in that network. The defender
can influence the attacker’s probabilities of observing the
networks. Typically, the best strategies make the attacker
indifferent between which host-type to attack first, which leads
to least effective attacks. For example, if the defender plays
OPTd strategy, than the attacker who observes network in I3,
with probability 0.45

0.45+0.11 ≈ 0.8 faces Network 2-R and with
0.2 Network 3-L. Since attacks are four times more likely to
succeed at host-type B than at A, the defender prefers adding
honeypot of B four times more than A.

Computing the defender’s strategy is difficult because: i)
the number of possible defender actions grows combinatorially
with the number of honeypots and host-types, ii) computing
the attacker’s optimal attack plan is NP-hard problem, and iii)
computing the defender’s strategy in Stackelberg equilibrium
is an NP-hard problem for imperfect-information games. We
describe the game model in more detail along with several
approximation algorithms in [1].

V. CASE STUDY I – TV COMPANY

We now present a case study demonstrating how we can
use this framework to model a real network, and feasibly
compute optimal honeypot allocations for this network. The
optimal strategies for this network incorporate deception, with
the defender exploiting the attacker’s uncertainty about the
network.

A. Domain Description

The case study is based on a network used during cyber
security exercises by Swedish Defence Research Agency in

I-net

mail

wwwHermes

Henry

Skri Linda

adtv
Sand

?
?

?

?

? ?

T

studio

fw1

fw2

gw

Fig. 3: Network for TV company.

2012 [6], where networks were deliberately left vulnerable to
attacks. We use TV company network depicted in Figure 3. For
demonstration, we simplify the original network by represent-
ing complete subnetworks as single host-types and reducing
the number of vulnerabilities to three of PCs and routers. The
resulting attack graph has 61 actions and 102 facts.

The attacker can initiate an attack on any PC (e.g., via
a malicious website visited by a user of that host) except
the target studio host (T in Figure 3). The routers cannot be
attacked remotely, only locally. The attacker aims to gain root
privileges to the studio host, which has value 1,000 for both
players. Exploit actions have costs between 5 and 10 (7.5 on
average) and success probabilities are estimated by MulVAL
(0.7 on average). The attacker has a penalty of 200 if he is
detected. The defender’s cost for creating a complex honeypot
mimicking studio is 130, while any other PC costs 30.

B. Game Analysis

The attacker knows the core network (nodes without a
question mark in Figure 3). While the attacker is uncertain
about the hosts with question marks, he knows that the
attacked network contains two of the hosts with a question
mark, but not which ones. The defender knows his network,
which consists of the core network and PC host-types adtv
and Linda. We refer to this as the real network.

Solving the game means finding the defender’s optimal
strategy specifying a honeypot allocation in every possible
network instance that can occur (after the chance move).
With two honeypots the defender adds honeypots of studio
host-type to secure the target host, despite their high cost. A
more interesting strategy occurs with three honeypots, where
the attacker reasons about

(7
3

)
= 35 possible networks and

computes attack plans. Since adtv is appealing for the attacker,
the defender’s strategy recommends adding adtv as a honeypot
in the networks where adtv does not exist (i.e., in hypothetical
networks other than the real network). This makes the attacker
cautious about attacking adtv. The defender of the real network
(with Linda and adtv) allocates honeypots as follows:

1) with probability 0.75: π1 = {fw2, adtv, studio}, and
2) with probability 0.25: π2 = {fw2, gw, Skri},

with expected utility -412. This leads to a counterintuitive
strategy for the rational attacker. He attacks adtv only when

5

two adtv hosts are present, one real and one honeypot (after ac-
tion π1). Although there is probability 0.5 that he will interact
with a honeypot, it is worth the risk. Counterintuitively, when
the defender plays π2, in which case adtv could be attacked
without interacting with a honeypot, the attacker reasons that
it is “too good to be true” and instead attacks www. When the
attacker observes a single adtv host, the host is more likely to
be a honeypot (with probability 0.65) than a real host, because
in the alternative networks adtv is often added as a honeypot.

With three honeypots the administrator can exploit the
attacker’s uncertainty by playing mixed strategies and reduce
their total costs. With more honeypots the optimal strategies
become difficult to comprehend in full detail, let alone cal-
culated by hand. Therefore, we argue that a decision support
system of this kind is valuable for the administrators.

VI. CASE STUDY II - HUMAN STRATEGIES

We conducted a survey to compare the performance of
the game-theoretic solutions to human opponents. The 45
respondents were participants in a four-day-long forensic
malware seminar, members of multi-agent technology group at
CTU, and employees of two computer security companies. The
survey was presented as a competition among the respondents
to motivate the respondents to create effective strategies.

To avoid overwhelming participants with too much infor-
mation, we used the simple networks in Figure 2 and set all
honeypot costs and attack action costs to zero. We kept the
reward of 1,000 for target host T and a penalty of 200 for
the attacker if detected, and the exploit success probabilities
of 0.2 and 0.8 for host-types A and B, respectively. Attacking
routers and host-type T is always successful, but the attacker
can initiate attack only from host-types A or B.

A. Respondent Behaviors

Analysis of 45 collected responses revealed five main
clusters in the respondents’ defense strategies. We compared
this clustering to clustering of 500 uniformly random data
sets using five standard quality metrics. The quality of our
clustering was better than the 95th percentile indicating that
the clusters are not likely to appear by chance. A strategy
belongs to a cluster if its L1 distance from a hand-selected
centroid strategy is less than 1/3.

For each cluster we present the percentage of the strategies
in that cluster and defender’s average expected utility (ud) of
the strategies against a worst-case attacker. The clusters can
be described as follows:

1) Optimal Strategy (OPTd) (15%,ud =−236±23) is a
cluster around the game theoretic solution.

2) Perfect Information (PId) (26%,ud = −267± 21) de-
fends each network in isolation by playing into I1, I4
and I5, not exploiting the attacker’s uncertainty.

3) Single Information Set (SISd) (11%,ud =−343±16)
in contrast to PId plays always to I5.

4) Biased Uniform (BUd) (26%,ud = −292± 22) mostly
allocates one honeypot to each side, and with probabili-
ties 0.1 and 0.2 both honeypots to A and B, respectively.

5) Both to B (BBd) (15%,ud =−255±24) protects more
vulnerable host-type B always with two honeypots.

6) Outliers (OLd) (13%,ud = −334± 111) are defense
strategies with larger distance than 1/3 to any centroid
strategy.

We visualize the individual defense strategies in Figure 4.
Each triangle represents one possible network and the points
represent the normalized probability distributions over pure
strategies (each corner represents a pure strategy).

B. Survey Analysis

In Table I is a summary of the strategy analysis. Each entry
contains the defender’s mean utility µ , standard deviation σ

and 10th (resp. 90th) percentile from 106 simulations for a pair
of a defense strategy (row) against an attack strategy (column).

The OPTd strategy maximizes the defender’s utility against
worst-case attacker. Column BRa is best-response (worst-case)
attack strategy against each defense strategy, which shows
how exploitable a defense strategy is. The Rd represents the
respondents’ defense strategies in our dataset. We generated a
single “mean” respondent strategy by averaging the individual
strategies, labeled MRd . By comparing these strategies to the
baseline uniform strategy, we see that respondents played
better than the random baseline.

The respondents’ mean attack strategy MRa reveals some
interesting observations. MRd against MRa has lower mean
utility than the optimal strategy OPTd against MRa. It means
that against the human attackers, it might be better to defend
with human defense strategy MRd rather than OPTd . However,
MRd may not be a good strategy in the long-term perspec-
tive. Attackers will likely learn from experience and move
towards the best-response BRa by increasing the frequency
of successful attacks and reducing failed ones [3]. Instead of
playing OPTd , it might be better to begin with MRd strategy,
but switch to OPTd as the attackers start adapting.

However, we can develop even better defense strategy than
OPTd or MRd , which exploits the human behavior. BRd is the
defender’s best-response defense strategy against the human
MRd attack strategy. This results in highest utility for the
defender; however, there is added risk because it is vulnerable
against BRa attackers who specifically exploit this strategy.

Our strategies have large σ due to two factors. First,
networks have different levels of security (Network 3 is more
vulnerable than Network 1) and more vulnerable networks
will naturally have lower utility. For example, with strategy
OPTd the administrator of Network 1, 2, and 3 has ex-
pected utility −23, −247, and −350, respectively. Second,
randomized strategies are necessary to minimize the strategy’s
predictability, but they also result in variability in outcomes.
The OPTd strategy has the lowest standard deviation against
both types of attackers, which can be a desirable property.

VII. CONCLUSION

Developing effective decision support tools is critical to
improving security as networks and attacks become more
complex. A particular concern is finding policies that are
robust as attackers learn and respond to the security strategy.

6

0.2

1.0

0.
2

0.
4

0.
6

0.
8

1.
0

0.2

0.4

0.6

0.8

1.0

0.8

0.6

0.4

0.2

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

Clusters
● BB

BU
OL
OPT
PI
SIS

M

R

L

Network 1 Network 2 Network 3

0.2

1.0

0.
2

0.
4

0.
6

0.
8

1.
0

0.2

0.4

0.6

0.8

1.0

0.8

0.6

0.4

0.2

0.
20.
4

0.
60.
8

1.
0

1.0

0.2

0.4

0.6

0.8

1.0
0.8

0.6

0.4

0.2

R M

L

M L

R

Fig. 4: Respondent’s defense strategies and a clustering of the strategies. Each triangle represents the space of possible defender
strategies for the network in Figure 2 (each corner is a pure strategy).

TABLE I: Defender’s utility, standard deviation, 10th and 90th percentile for the
defender’s strategies (rows) and attacker’s strategies (columns). BRa - attacker’s best-
response strategy to defense strategy; MRd ,MRa - mean respondent defense (resp. attack)
strategy.

Defense / Attack Best Response BRa Mean Respondent MRa
µ σ 10th, 90th percentile µ σ 10th, 90th percentile

Optimal (OPTd) -207 131 -350, -50 -189 181 -350, 100
Respondent (Rd) -285 236 -500, 100 -167 208 -360, 100
Mean Respondent (MRd) -262 266 -500, 100 -164 207 -360, 100
Baseline uniform -317 322 -800, 100 -162 240 -500, 100
Best Response (BRd) -302 187 -500, -50 -111 200 -500, 100

Game theory is a promising tools for developing these decision
support systems because it explicitly models the reactions of
the opponent. It can also model deception and information ma-
nipulation by predicting and manipulating opponents’ beliefs.

We show how game theory can be used to construct and
analyze models of defensive measures for realistic networks.
Our models use automatically constructed attack graphs from
publicly available data to represent possible attack plans. We
conducted an initial validation study with human decision
makers to directly compare the game-theoretic solutions with
humans. The results show strengths and weaknesses of both
the theoretical and human solutions: humans were effective at
defending against human attackers, but fared poorly against
worst-case opponents. The game-theoretic strategies are ro-
bust, but there are opportunities to further exploit weaknesses
in human opponents. In addition, we had to simplify the game
considerably so the human players could understand it. In
complex scenarios humans may not be able to compute any
plausible strategy with a reasonable effort. Further empirical
studies are clearly needed to investigate the effectiveness of
game models for network security, but we view this as a
promising first step.

Our work has potential for a further research in several
directions. The attacker’s interaction with the honeypots can
be modeled in more detail, including the attacker’s attempts to

detect the honeypots, etc. It would capture more realistically
the attacker’s penalties and results in more robust defense
strategies. Another direction is to include into the model the
network changes, which can be partially solved by deploying
dynamic honeypots that can be reconfigured according to the
new strategies for the modified networks. This model could
consider set of possible network changes and find strategies
that additionally minimize cost for honeypot reconfigurations.

ACKNOWLEDGMENT

This work was supported by the Grant Agency of the
CTU in Prague (SGS16/235/OHK3/3T/13), Czech Science
Foundation (15-23235S) and Cisco Systems.

REFERENCES

[1] Karel Durkota, Viliam Lisý, Branislav Bošanský, and Christopher Kiek-
intveld. Approximate solutions for attack graph games with imperfect
information. In Decision and Game Theory for Security, pages 228–249.
Springer, 2015.

[2] Karel Durkota, Viliam Lisý, Branislav Bošanský, and Christopher Kiek-
intveld. Optimal network security hardening using attack graph games.
In Proceedings of IJCAI, pages 7–14, 2015.

[3] Ehud Kalai and Ehud Lehrer. Rational learning leads to nash equilibrium.
Econometrica: Journal of the Econometric Society, pages 1019–1045,
1993.

[4] Peter Mell, Karen Scarfone, and Sasha Romanosky. Common vulnera-
bility scoring system. Security & Privacy, pages 85–89, 2006.

7

[5] Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. A scalable
approach to attack graph generation. In CCS, pages 336–345, 2006.

[6] Teodor Sommestad and Fredrik Sandström. An empirical test of the
accuracy of an attack graph analysis tool. Information & Computer
Security, 23(5):516–531, 2015.

[7] Lance Spitzner. Honeypots: Catching the insider threat. In Computer
Security Applications Conference, 2003. Proceedings. 19th Annual, pages
170–179. IEEE, 2003.

[8] Milind Tambe. Security and Game Theory: Algorithms, Deployed
Systems, Lessons Learned. Cambridge University Press, 2011.

[9] Lingyu Wang, Tania Islam, Tao Long, Anoop Singhal, and Sushil Ja-
jodia. An attack graph-based probabilistic security metric. In Data and
Applications Security XXII, volume 5094, pages 283–296. Springer Berlin
Heidelberg, 2008.

