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Abstract. We study the problem of network security hardening, in
which a network administrator decides what security measures to use to
best improve the security of the network. Specifically, we focus on deploy-
ing decoy services or hosts called honeypots. We model the problem as
a general-sum extensive-form game with imperfect information and seek
a solution in the form of Stackelberg Equilibrium. The defender seeks
the optimal randomized honeypot deployment in a specific computer
network, while the attacker chooses the best response as a contingency
attack policy from a library of possible attacks compactly represented
by attack graphs. Computing an exact Stackelberg Equilibrium using
standard mixed-integer linear programming has a limited scalability in
this game. We propose a set of approximate solution methods and ana-
lyze the trade-off between the computation time and the quality of the
strategies calculated.

1 Introduction

Networked computer systems support a wide range of critical functions in both
civilian and military domains. Securing this infrastructure is extremely costly
and there is a need for new automated decision support systems that aid human
network administrators to detect and prevent the attacks. We focus on network
security hardening problems in which a network administrator (defender) reduces
the risk of attacks on the network by setting up honeypots (HPs) (fake hosts
or services) in their network [30]. Legitimate users do not interact with HPs;
hence, the HPs act as decoys and distract attackers from the real hosts. HPs can
also send intrusion detection alarms to the administrator, and/or gather detailed
information the attacker’s activity [13,29]. Believable HPs, however, are costly
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to set up and maintain. Moreover, a well-informed attacker anticipates the use of
HPs and tries to avoid them. To capture the strategic interactions, we model the
problem of deciding which services to deploy as honeypots using a game-theoretic
framework.

Our game-theoretic model is motivated in part by the success of Stackelberg
models used in the physical security domains [33]. One challenge in network secu-
rity domains is to efficiently represent the complex space of possible attack strate-
gies, we make use of a compact representation of strategies for attacking com-
puter networks called attack graphs. Some recent game-theoretic models have also
used attack graphs [12,19], but these models had unrealistic assumptions that the
attacker has perfect information about the original network structure. The major
new feature we introduce here is the ability to model the imperfect information
that the attacker has about the original network (i.e., the network structure before
it is modified by adding honeypots). Imperfect information of the attacker about
the network have been proposed before [8,28], however, the existing models use
very abstract one step attack actions which do not allow the rich analysis of the
impact of honeypots on attacker’s decision making presented here.

Attack graphs (AGs) compactly represent a rich space of sequential attacks
for compromising a specific computer network. AGs can be automatically gen-
erated based on known vulnerability databases [15,26] and they are used in
the network security to identify the minimal subset of vulnerabilities/sensors
to be fixed/placed to prevent all known attacks [24,32], or to calculate security
risk measures (e.g., the probability of a successful attack) [14,25]. We use AGs
as a compact representation of an attack plan library, from which the rational
attacker chooses the optimal contingency plan.

The defender in our model selects which types of fake services or hosts to
add to the network as honeypots in order to minimize the trade-off between
the costs for deploying HPs and reducing the probability of successful attacks.
We assume that the attacker knows the overall number of HPs, but does not
know which types of services the defender actually allocated as HPs. This is in
contrast to previous work [12], where the authors assumed a simplified version
to our game, where the attacker knows the types of services containing HPs. The
uncertainty in the existing model is only about which specific service/computer is
real among the services/computers of the same type. Our model captures more
general (and realistic) assumptions about the knowledge attackers have when
planning attacks, and we show that the previous perfect information assumptions
can lead to significantly lower solution quality.

Generalizing the network hardening models to include imperfect information
greatly increases the computational challenge in solving the models, since the
models must now consider the space of all networks the attacker believes are
possible, which can grow exponentially. Computing Stackelberg equilibria with
stochastic events and imperfect information is generally NP-hard [18] and algo-
rithms that compute the optimal solution in this class of games typically do
not scale to real-world settings [7]. Therefore we (1) present a novel collection of
polynomial time algorithms that compute approximate solutions by relaxing cer-
tain aspects of the game, (2) experimentally show that the strategies computed
in the approximated models are often very close to the optimal strategies in the
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original model, and (3) propose novel algorithms to compute upper bounds on
the expected utility of the defender in the original game to allow the evaluation
of the strategies computed by the approximate models even in large games.

2 Background and Definitions

We define a computer network over a set of host types T , such as firewalls,
workstations, etc. Two hosts are of the same type if they run the same services,
have the same vulnerabilities and connectivity in the network and have the same
value for the players (i.e., a collection of identical workstations is modeled as a
single type). All hosts of the same type present the same attack surface, so
they can be represented only once in an attack graph. Formally, a computer
network x ∈ N

T
0 contains xt hosts of type t ∈ T . An example network instance

is depicted in Fig. 1a, where, e.g., host type WS1 represents 20 workstations of
the same type. We first define attack graphs for the case where attackers have
perfect information about the network.

Attack Graph. There are multiple representations of AGs common in the liter-
ature. Dependency AGs are more compact and allow more efficient analysis than
the alternatives [21]. Formally, they are a directed AND/OR graph consisting
of fact nodes and action nodes. Fact nodes represent logical statements about
the network and action nodes correspond to the attacker’s atomic actions. Every
action a has preconditions, set of facts that must be true in order to preform
the action, and effects, set of facts that become true if action succeeds, in which
case the attacker obtains the rewards of corresponding facts. Moreover, action a
has probability of being performed successfully pa ∈ [0, 1], cost ca ∈ R

+ that the
attacker pays regardless whether the action succeeded or not, and a set of host
types τa ⊆ T that action a interacts with. The first time the attacker interacts
with a type t ∈ T , a specific host of that type is selected with a uniform proba-
bility. Since we assume a rational attacker, future actions on the same host type
interact with the same host. Interacting with different host of the same type (1)
has no additional benefit for the attacker as rewards are defined based on the
types and (2) can only increases the probability of interacting with a honeypot
and ending the game. The attacker can terminate the attack any time. We use
the common monotonicity assumption [1,23,26] that once a fact becomes true
during an attack, it can never become false again as an effect of any action.

Fig. 1. Simple (a) business-like and (b) chain network topology.
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AGs can be automatically generated using various tools. We use the Mul-
VAL [27] to construct dependency AGs from information automatically collected
using network scanning tools, such as Nessus1 or OpenVAS2. These AGs con-
sist of an attacker’s atomic actions, e.g., exploit actions for each vulnerability
of each host, pivoting “hop” actions between the hosts that are reachable from
each other, etc. Previous works (e.g., [31]) show that probabilistic metrics can be
extracted from the Common Vulnerability Scoring System [22], National Vulner-
ability Database [2], historical data, red team exercises, or be directly specified
by the network administrator.

Attack Policy. In order to fully characterize the attacker’s attack, for a given
AG we compute a contingent attack policy (AP), which defines an action from
the set of applicable actions according to the AG for each situation that may arise
during an attack. This plan specifies not only the actions likely to be executed
by a rational attacker, but also the order of their execution. Linear plans that
may be provided by classical planners (e.g., [5,21]) are not sufficient as they
cannot represent attacker’s behavior after action failures. The optimal AP is the
AP with maximal expected reward for the attacker. See [12] for more details on
the attack graphs and attack policies and explanatory examples.

3 Imperfect Information HP Allocation Game

A real attacker does not know the network topology deployed in the company,
but may have prior beliefs about the set of networks that the organization would
realistically deploy. We assume that the attacker’s prior belief about the set
of networks that the organization is likely to deploy is common knowledge to
both players. However, the attacker may know a subset of host types used by
the organization, we refer to as a basis of a network, e.g., server, workstation,
etc. To capture the set of networks we model the game as an extensive-form
game with a specific structure. Nature selects a network from the set of possible
networks (extensions of the basis network) with the probabilities corresponding
to the prior attacker’s beliefs about the likelihood of the different networks. The
defender observes the actual network and hardens it by adding honeypots to
it. Different networks selected by nature and hardened by the defender may
lead to networks that look identical to the attacker. The attacker observes the
network resulting from the choices of both, nature and the defender, and attacks
it optimally based on the attack graph for the observed network. We explain
each stage of this three stage game in more detail for the simple example in
Fig. 2.

3.1 Nature Actions

For the set of host types T , total number of hosts n ∈ N and basis net-
work b ∈ N

T
0 , we generate set of possible networks X including all possible

1 http://www.nessus.org
2 http://www.openvas.org

http://www.nessus.org
http://www.openvas.org
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Fig. 2. Simple game tree with |T | = 3 host types, basis b = (1, 0, 1), number of hosts
n = 3 and k = 1 HP. The defender’s costs for HPs are ch1 = 4 and ch3 = 1. The attacker’s
attack action 1 (resp. 3) exploits vulnerability of host type 1 (resp. 3), costs c1 = 8
(resp. c3 = 4); reward is r1 = 40 (resp. r3 = 10); and success probability p1 = 0.2
(resp. p3 = 0.4). The action’s probabilities of interacting with honeypot (h) depend on
defender’s honeypot allocations and probabilities of succeeding (s) and failing (f) are
accordingly normalized. Attacker’s action 0 denotes the attacker ends his attack, which
leads to the terminal state. In the chance nodes (except the one in the root) nature
chooses weather the previous action: interacts with the HP (h), did not interact with
HP and succeeded (s) or failed (f) with the given probabilities.

combinations of assigning n hosts into T host types that contain basis in it
(∀x ∈ X : ∀t ∈ T : xt ≥ bt). E.g., in Fig. 2 the set of types is T = {D,W,S}
(e.g., database, workstation, server), and the network basis is b = (1, 0, 1), a data-
base and a server. Nature selects a network x ∈ X = {(2, 0, 1), (1, 1, 1), (1, 0, 2)}
with uniform probability δx = 1

3 .

3.2 Defender’s Actions

Each network x ∈ X the defender further extends by adding k honeypots of types
from T . Formally, set of all defender’s actions is Y = {y ∈ N

T
0 |∑t∈T yt = k}.

Performing action y ∈ Y on network x ∈ X results in network z = (x, y), where
each host type t consist of xt real hosts and yt HPs. The attacker’s action on host
type t interacts with a honeypot with probability ht = yt

xt+yt
. Let Z = X × Y

be the set of all networks created as fusion of x ∈ X with y ∈ Y . We also define
ch
t ∈ R+ to be the cost that the defender pays for adding and maintaining a HP

of type t. In the example in Fig. 2 the defender adds k = 1 HP and set of the
defender’s actions is Y = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Extending each network
x ∈ X by every choice from Y results in |Z| = 9 different networks.
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3.3 Attacker’s Actions

The attacker observes the number of hosts of each type, but not whether they
are real or honeypots. The attacker’s imperfect observation is modeled using
information sets I that form a partition over the networks in Z. Networks in an
information set are indistinguishable for the attacker. Two networks z = (x, y)
and z′ = (x′, y′) belong to the same information set I ∈ I if and only if ∀t ∈ T :
xt + yt = x′

t + y′
t holds. Networks z, z′ ∈ I have the same attack graph structure

and differ only in the success probabilities and probabilities of interacting with a
honeypot, therefore, they produce the same set of attack policies. Let SI denote
the set of valid attack policies in information set I. We also define I(z) (resp.
I(x, y)) to be a function that for a given network z (resp. (x, y)) returns the
information set I ∈ I such that z ∈ I (resp. (x, y) ∈ I). Executing the AP
s ∈ SI leads to the terminal state of the game. In the example in Fig. 2, the
attacker observes 6 different information sets, three singletons (contain only one
network), e.g., {((2, 0, 1), (1, 0, 0))}, and three information sets that contain two
networks (denoted with dashed lines), e.g., I1 = {z1 = ((2, 0, 1), (0, 0, 1)), z2 =
((1, 0, 2), (1, 0, 0))}. An example of AP is: perform action 3 in I1; if it succeeds,
continue with action 1 and if fails then 0.

3.4 Players’ Utilities

The players utilities in terminal state l ∈ L with path P from the root of the
game tree to l is computed based on three components: Rl - the sum of the
rewards

∑
t∈T s rt for successfully compromising host types T s ⊆ T along P ;

Cl - the sum of the performed action costs by the attacker along P , and Hl -
the defender’s cost for allocating the HPs along P . The defender’s utility is then
ud(l) = −Rl − Hl and attacker’s utility is ua(l) = Rl − Cl. Utility for an attack
policy is expected utility of the terminal states. Although we assume that Rl is
a zero-sum component in the utility, due to player private costs Hl and Cl the
game is general-sum.

In our example in Fig. 2, utilities are at the leaf of the game tree labeled with
two values. The value at the top is the defender’s utility and at the bottom is
the attacker’s utility in that terminal state. We demonstrate the player’s utility
computations for the terminal state, the bold one in Fig. 2, we refer as to l1. The
three components are as follows: Rl1 = r1 = 40 (only action 1 succeeded), Cl1 =
c1 + c3 = 12 (attempted actions were 1 and 3) and Hl1 = ch

3 = 1 (for allocating
HP in as type t = 3); thus the attacker’s utility is ua(l1) = Rl1 − Cl1 = 28 and
the defender’s ud(l1) = −Rl1 − Hl1 = −41.

3.5 Solution Concepts

Formally, we define the Stackelberg solution concept, where the leader (the
defender in our case) commits to a publicly known strategy and the follower
(the attacker in our case) plays a best response to the strategy of the leader.
The motivated attacker may be aware of the defender’s use of game-theoretic
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approach, in which case the attacker can compute or learn from past experi-
ences the defender’s strategy and optimize against it. We follow the standard
assumption of breaking the ties in favor of the leader (often termed as Strong
Stackelberg Equilibrium, (SSE); e.g. [11,33]).

We follow the standard definition of strategies in extensive-form games.
A pure strategy πi ∈ Πi for player i ∈ {d, a} is an action selection for every
information set in the game (Πi denotes the set of all pure strategies). Mixed
strategy σi ∈ Σi for player i is a probability distribution over the pure strategies
and Σi is the set of all mixed strategies. We overload the notation for the utility
function and use ui(σi, σ−i) to denote the expected utility for player i if the
players are following the strategies in σ = (σi, σ−i). Best response pure strategy
for player i against the strategy of the opponent σ−i, denoted BRi(σ−i) ∈ Πi, is
such that ∀σi ∈ Σi : ui(σi, σ−i) ≤ ui(BRi(σ−i), σ−i). Let d denote the defender
and a the attacker, then Stackelberg equilibrium is a strategy profile

(σd, πa) = arg max
σ′
d∈Σd;π′

a∈BRa(σ′
d)

ud(σ′
d, π

′
a).

In our game, the defender chooses honeypot types to deploy in each network
x ∈ X and the attacker chooses pure strategy πa ∈ Πa = ×I∈ISI , an attack
policy to follow in each information set I ∈ I.

4 Game Approximations

The general cases of computing Stackelberg equilibria of imperfect information
games with stochastic events is NP-hard [18]. The state-of-the-art algorithm
for solving this general class of games uses mixed-integer linear programming
and the sequence-form representation of strategies [7]. Our case of attack graph
games is also hard because the size of the game tree representation is exponential
in natural parameters that characterize the size of a network (number of host
types T , number of hosts n, or number of honeypots k), which further limits the
scalability of algorithms. We focus here on a collection of approximations that
find strategies close to SSE in polynomial time w.r.t. the size of the game tree.
We present the general idea of several approximation methods first, and discuss
the specific details of new algorithms in the next section.

4.1 Perfect Information Game Approximation

A straightforward game approximation is to remove the attacker’s uncertainty
about the actions of nature and the defender, which results in a perfect informa-
tion (PI) game. Although the authors in [18] showed that in general the PI game
with chance nodes is still NP-hard to solve, the structure of our game allows us
to find a solution in polynomial time. The nature acts only once and only at the
beginning of game. After nature’s move the game is a PI game without chance
nodes, which can be solved in polynomial time w.r.t. the size of the game [18]. To
solve the separate subgames, we use the algorithm proposed in [12]. It computes
the defender’s utility for each of the defender’s actions followed by attacker’s best
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response. Next, the algorithm selects the best action to be played in each sub-
game by selecting the action with maximal utility for the defender. In Sect. 5.2
we discuss the algorithm that computes the optimal attack policy.

4.2 Zero-Sum Game Approximation

In [17] the authors showed that under certain conditions approximating the
general sum (GS) game as a zero-sum (ZS) game can provide an optimal strategy
for the GS game. In this section we use a similar idea for constructing ZS game
approximations, for which we compute a NE that coincides with SSE in ZS
games. A NE can be found in polynomial time in the size of the game tree using
the LP from [16].

Recall that in our game the defender’s utility is ud(l) = −Rl − Hl and the
attacker’s utility is ua(l) = Rl − Cl for terminal state l ∈ L. In the payoff
structure Rl is a ZS component and the smaller |Hl −Cl|, the closer our game is
to a ZS game. We propose four ZS game approximations: (ZS1) players consider
only the expected rewards of the attack policy ud(l) = −Rl; (ZS2) consider only
the attacker’s utility ud(l) = −Rl +Cl; (ZS3) consider only the defender’s utility
ud(l) = −Rl − Hl; and (ZS4) keep the player’s original utilities with motivation
to harm the opponent ud(l) = −Rl − Hl + Cl.

We also avoid generating the exponential number of attack policies by using
a single oracle algorithm (Sect. 5.1). This algorithm has two subroutines: (i)
computing a SSE of a ZS game and (ii) finding the attacker’s best response
strategy to the defender’s strategy. The attacker’s best response strategy we
find by translating the problem into the Partially Observable Markov Decision
Process (POMDP), explained in Sect. 5.2.

4.3 Commitment to Correlated Equilibrium

The main motivation for this approximation is the concept of correlated equilib-
ria and an extension of the Stackelberg equilibrium, in which the leader commits
to a correlated strategy. It means that the leader not only commits to a mixed
strategy but also to signal the follower an action the follower should take such
that the follower has no incentive to deviate. This concept has been used in
normal-form games [10] and stochastic games [18]. By allowing such a richer set
of strategies, the leader can gain at least the same utility as in the standard
Stackelberg solution concept.

Unfortunately, computing commitments to correlated strategies is again an
NP-hard problem in general extensive-form games with imperfect information
and chance nodes (follows from Theorem 1.3 in [34]). Moreover, the improvement
of the expected utility value for the leader can be arbitrarily large if commitments
to correlated strategies are allowed [18]. On the other hand, we can exploit these
ideas and the linear program for computing the Stackelberg equilibrium [10], and
modify it for the specific structure of our games. This results in a novel linear
program for computing an upper bound on the expected value of the leader in
a Stackelberg equilibrium in our game in Sect. 5.3.
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5 Algorithms

5.1 Single Oracle

The single oracle (SO) algorithm is an adaptation of the double oracle algorithm
introduced in [6]. It is often used when one player’s action space is very large (in
our case the attacker’s). The SO algorithm uses the concept of a restricted game
Ĝ, which contains only a subset of the attacker’s actions from the full game G.

In iteration m the SO algorithm consists of the following steps: (i) compute
SSE strategy profile (σ̂m

d , π̂m
a ) (if m = 1 then σ̂1

d is a strategy where the defender
plays every action with uniform probability) of the restricted game Ĝ and com-
pute the attacker’s best response πm

a = BRa(σ̂m
d ) in the full game G. If all

actions from πm
a are included in the restricted game Ĝ, the algorithm returns

strategy profile (σ̂m
d , π̂m

a ) as a SSE of the full game G. Otherwise, (ii) it extends
the restricted game Ĝ by including the attacker’s policies played in π̂m

a and goto
(i) with incremented iteration counter m. Initially Ĝ contains all nature’s and
the defender’s actions and none of the attacker’s actions. We use this algorithm
to solve all four variants of the ZS approximations proposed in Sect. 4.2. We
refer to this approach as SOZS.

The SO algorithm is also well defined for GS games and can be directly
applied to the original game. However, it does not guarantee that the computed
SSE of the Ĝ is also the SSE of G. The reason is that the algorithm can converge
prematurely and Ĝ may not contain all the attacker’s policies played in SSE in G.
Nevertheless, the algorithm may find a good strategy in a short time. We apply
this algorithm to our GS game and use mixed integer linear program (MILP)
formulation ([7]), to compute the SSE of Ĝ in each iteration. Finding a solution
for a MILP is an NP-complete problem, so this algorithm is not polynomial. We
refer to this approach as SOGS.

5.2 Attacker’s Optimal Attack Policy

The attacker’s best response πa = BRa(σd) to the defender’s strategy σd is
computed by decomposing the problem into the subproblems of computing the
optimal AP for each of the attacker’s information set separately. We can do that
because subgames of any two informations sets do not interleave (do not have
any common state). We calculate the probability distribution of the networks
in an information set based on σd, which is the attacker’s prior belief about
the probabilities about the states in the information set. The networks in an
information set produce the same attack graph structure. However, the actions
may have different probabilities of interacting with the honeypots depending on
the defender’s honeypot deployment on the path to that network.

Single Network. First, we describe an existing algorithm that finds the optimal
AP for a single AG for a network, introduced in [12]. The algorithm translates
the problem of finding the optimal AP of an AG into a (restricted) finite horizon
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Markov Decision Process (MDP) and uses backward induction to solve it. A state
in the MDP is represented by: (i) the set of executable attack actions α in
that state (according to the AG), (ii) the set of compromised host types and
(iii) the set of host types that the attacker interacted with so far. In each state the
attacker can execute an action from α. Each action has a probabilistic outcome
of either succeeding (s), failing (f), or interacting with a honeypot (h), described
in detail in [12]. After each action, the sets that represent the MDP state are
updated based on the AG, the performed action and its outcome (e.g., the actions
that became executable are added to α, the performed action and actions no
longer needed are removed, etc.), which represents a new MDP state. If the
action successfully compromises a host type t, reward rt is assigned to that
transition. The MDP can be directly incorporated into the game tree, where the
attacker chooses an action/transition in each of his states and stochastic events
are modeled as chance nodes. The rewards are summed and presented in the
terminal states of the game. The authors propose several pruning to generate
only promising and needed part of the MDP such as branch and bound and
sibling-class theorem and speed-up techniques, such as dynamic programming,
which we also adopt.

Multiple Networks. The previous algorithm assumes that the MDP states can
be perfectly observed. One of our contributions in this paper is an extension of
the existing algorithm that finds the optimal AP for a set of networks with a prior
probability distribution over them. The attacker has imperfect observation about
the networks. We translate the problem into a POMDP. Instead of computing
the backward induction algorithm on single MDP, we compute it concurrently
in all MDPs, one per network in the information set. In Fig. 2 we show a part of
the POMDP for information set I1, which consists of two MDPs, one for network
z1 and another for z2.

The same action in different MDPs may have different transition probabil-
ities, so we use Bayes rule to update the probability distribution among the
MDPs based on the action probabilities. Let J be the number of MDPs and let
βj(o) be the probability that the attacker is in state o in MDP j ∈ {1, . . . , J}.
Performing action a leads to state o′ with probability Pj(o, o′, a). The updated
probability of being in j-th MDP given state o′ is βj(o′) = Pj(o,o′,a)βj(o)∑J

j′=1 Pj′ (o,o′,a)βj′ (o)
.

This algorithm returns the policy with the highest expected reward given the
probability distribution over the networks. During the optimal AP computation,
we use similar pruning techniques to those described in [12].

5.3 Linear Program for Upper Bounds

In [10] the authors present a LP that computes SSE of a matrix (or normal-
form) game in polynomial time. The LP finds the probability distribution over
the outcomes in the matrix with maximal utility for the defender under the
condition that the attacker plays a best response. We represent our game as a
collection of matrix games, one for each of the attacker’s IS, and formulate it as
a one LP problem.
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Formally, for each attacker’s information set I ∈ I we construct a matrix
game MI where the defender chooses network z ∈ I (more precisely an action
y ∈ Y that leads to network z ∈ I) and the attacker chooses an AP s ∈ SI for
information set I. The outcomes in the matrix game coincide with the outcomes
in the original extensive-form game. The LP formulation follows:

max
∑

x∈X

∑

y∈Y

∑

s∈SI(x,y)

pxysud(x, y, s) (1a)

s.t. :(∀I ∈ I, s, s′ ∈ SI) :
∑

(x,y)∈I

pxysua(x, y, s) ≥
∑

(x,y)∈I

pxysua(x, y, s′) (1b)

(∀x ∈ X, y ∈ Y ) :
∑

x∈X

∑

y∈Y

∑

s∈SI(x,y)

pxys = 1 (1c)

(∀x ∈ X, y ∈ Y, s ∈ SI(x,y)) : pxys ≥ 0 (1d)

(∀x ∈ X) :
∑

y∈Y

∑

s∈SI(x,y)

pxys = δx, (1e)

where the only variables are pxys, which can be interpreted as probability that
natures play x, the defender plays y and the attacker is recommended to play
s. The objective is to maximize the defender’s expected utility. Constraint 1b
ensures that the attacker is recommended (and therefore plays) best response.
It states that deviation from the recommended action s by playing any other
action s′ does not increase the attacker’s expected utility. Equations 1c and 1d
are standard probability constraints and 1e restricts the probabilities of the
outcomes to be coherent with the probabilities of the chance node.

We demonstrate our approach on game in Fig. 3a. The game consists of two
ISs: I1 = {z11, z23} and I2 = {z12, z24} each corresponds to a matrix game in
Fig. 3b. The defender’s actions y1 and y3 lead to I1 and y2 and y4 lead to I2. The
attacker’s attack policies are SI1 = {s1, s2} and SI2 = {s3, s4}. The probabilities
of the terminal states of the game tree correspond to the outcome probabilities
in the matrix games (px,y,s). Moreover, the probabilities p111, p112, p123 and p124
sum to δ1, as they root from nature’s action x1 played with probability δ1. The
same holds for the other IS.

Fig. 3. The extensive-form game in (a) translated into two normal-form games in (b).
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This LP has weaker restrictions on the solution compared to the MILP for-
mulation for SSE [7] since it does not restrict the attacker to play a pure best
response strategy. The objective is to maximize the defender’s utility, as in the
MILP. Therefore, it does not exclude any SSE of the game. The value of this
LP, referred to as SSEUB, is an upper bound on the defender’s expected utility
when playing an SSE.

The drawback of formulating our game as a LP is that it requires finding all
(exponential many) AP for each network in advance. We reduce this number by
considering only rationalizable (in [4]) APs for each information set. An AP is
rationalizable if and only if it is the attacker’s best response to some belief about
the networks in an IS. The set of all rationalizable APs is called Closed Under
Rational Behaviour (CURB) set [3]. By considering only the CURB set for the
attacker, we do not exclude any SSE with the following rationale. Any AP that
is in SSE is the set of attacker best responses, so it must be rationalizable and
therefore it must be in the CURB set.

From the LP result we extract the defender’s strategy as a marginal probability
for each defender’s action: the probability that defender plays action y ∈ Y in state
x ∈ X is

∑
s∈SI(x,y)

Pxys. We will refer to this mixed strategy as σCCE
d and to the

defender’s utility in the strategy profile ud(σCSE
d , BRa(σCSE

d )) as CSE.

CURB for Multiple Networks. We further extend the best response algo-
rithms to compute the CURB set. We use the incremental pruning algorithm [9],
a variant of the backward induction algorithm that in every attacker decision
state propagates the CURB set of attack policies for the part of the POMDP
that begins in that decision state. Let A be a set of actions in a decision state
o. The algorithm is defined recursively as follows. (i) Explore each action a ∈ A
in state o and obtain the CURB set of policies Sa for the part of the POMDP
after the action a; (ii) for every action a ∈ A extend each policy sb ∈ Sa to begin
with action a in the current state o and then continue with policy sb; (iii) return
the CURB set from the union of all policies ∪a∈ASa for state o. In step (iii) we
use the standard feasibility linear program to check whether policy sb is in the
CURB set by finding if there exists a probability distribution between MDPs
where sb yields the highest utility among ∪a∈ASa \ sj , as described in [3,9].

6 Experiments

We experimentally evaluate and compare our proposed approximation models
and the corresponding algorithms. Namely we examine: (i) Perfect informa-
tion (PI) approximation solved with backward induction (Sect. 4.1), (ii) the ZS
approximation games solved with SO algorithm, which we refer to as to SOZS1
through SOZS4 (number corresponds to the variant of the ZS approximation),
(iii) SO algorithm applied on GS game (SOGS), and (iv) Correlated Stackelberg
Equilibrium (CSE) (Sect. 5.3). We also compute the defender’s upper bound
utility SSEUB and use it as reference point to evaluate the strategies found by
the other approximations.
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The structure of the experimental section is as follows: in Sect. 6.1 we describe
networks we use to generate the action graph game, in Sect. 6.2 we discuss an
issue of combinatorially large CURB sets for one of the networks, in Sect. 6.3 we
analyze the scalability of the approximated models, in Sect. 6.4 we analyze the
quality of the strategies found by the approximated models and in Sect. 6.5 we
analyze how the strategies calculated by the approximated models of ZS games
depend on how close the games are to being zero-sum. In Sect. 6.6 we investigate
the defender’s regret for imprecisely modeling the attack graph, and conclude
with a case-study analysis in Sect. 6.7.

6.1 Networks and Attack Graphs

We use three different computer network topologies. Two of them are depicted in
Fig. 1, small business (Fig. 1a) and chain network (Fig. 1b). Connections between
the host types in the network topology correspond to pivoting actions for the
attacker in the attack graph (from the compromised host the attacker can fur-
ther attack the connected host types). We vary the number of vulnerabilities
of each host type, which is reflected in the attack graph as an attack action
per vulnerability. We generate the actions’ success probabilities pa using the
MulVAL that uses Common Vulnerability Scoring System. Action costs ca are
drawn randomly in the range from 1 to 100, and host type values rt and the cost
for honeypot ch

t of host type t are listed in Table 1. We assume that the more
valuable a host type is the more expensive it is to add a HP of that type. We
derive honeypot costs linearly from the host values with a factor of 0.02. The
basis network b for the business and chain network consists of the black host
types in Fig. 1. We scale each network by adding the remaining depicted host
types and then by additional workstations. We also scale the total number of
hosts n in the network and the number of honeypots k. Each parameter increases
combinatorially the size of the game.

The third network topology is the unstructured network, where each host
type is directly connection only to the internet (not among each other). The
attack graph consists of one attack action t per host type T , which attacker
can perform at any time. For the unstructured network we create diverse attack
graphs by drawing: host types values uniformly from rt ∈ [500, 1500], action
success probabilities uniformly from pt ∈ [0.05, 0.95] and action costs uniformly
from ct ∈ [1, rtpt]. We restrict the action costs from above with rtpt to avoid the
situations where an action is not worth performing for the attacker, in which
case the attack graph can be reduced to a problem with |T |− 1 types. The basis
network b consists of two randomly chosen host types.

Table 1. Host type values and costs for deploying them as honeypots.

Host type t Database Firewall WSn Server

Value of host type rt 5000 500 1000 2500

Cost for deploying HP of host type cht 100 10 20 50
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All experiments were run on a 2-core 2.6 GHz processor with 32 GB memory
limitation and 2 h of runtime.

6.2 Analytical Approach for CURB for Unstructured Network

The incremental pruning algorithm described in Sect. 5.3 generates a very large
number of attack policies in the CURB set for the unstructured network. In order
to be able to compute the upper bound for solution quality for larger game and in
order to understand the complexities hidden in CURB computation, we analyze
this structure of the curb for this simplest network structure formally. In Fig. 4a
we show an example of the attacker’s utilities for the policies in a CURB set
generated for an information set with two networks. Recall ht = yt

xt+yt
is the

probability that action that interacts with host type t (in this case action t)
will interact with a honeypot. On the x-axis is probability distribution space
between two networks, one with ht = 0 (yt = 0 and xt > 0) and other with
ht = 1 (yt > 0 and xt = 0). The y-axis is the attacker’s utility for each attack
policy in the CURB. The algorithm generates the attack policies known as zero
optimal area policies (ZAOPs) [20], denoted with dashed lines in the figure. A
policy is ZAOP if and only if it is an optimal policy at a single point in the
probability space (dashed policies in Fig. 4a). The property of ZAOP is that
there is always another policy in the CURB set with strictly larger undominated
area. It raises two questions: (i) can we remove ZAOPs from the CURB set and
(ii) how to detect them. Recall that in SSE the attacker breaks ties in favour
of the defender. Therefore, we can discard ZAOP as long as we keep the best
option for the defender.

Further analysis showed that ZAOPs occur when ht = 1− ct
ptrt

(at probability
0.69 and 0.99 in Fig. 4a). It is because the expected reward of action t at that
point is pt(1 − ht)rt − ct = ptrt

ct
ptrt

− ct = 0, which means that the attacker
is indifferent whether to perform action t or not. The algorithm at probability
ht = 1 − ct

ptrt
generates the set of attack policies with all possible combinations

where the attacker can perform action t in the attack policy. Let P (t) be the
probability that the attacker performs action t in an attack policy. The defender’s
utility for action t is −rtpt(1 − ht)P (t) = −ctP (t). Because the attacker breaks
ties in favour of the defender, at ht = 1 − ct

ptrt
the attacker will choose not to

perform action t and we can keep only the policy that does not contain action t.
Furthermore, we categorize each action t based on ht to one of three classes:

to class A if ht = 0, to class B if 0 < ht < 1− ct
ptrt

and to class C if 1− ct
ptrt

< ht.
In an optimal attack policy: (i) all actions from A are performed first and any
of their orderings yield the same expected utility for the attacker, (ii) all actions
from B are performed and their order is in increasing order of pt(1−ht)rt−ct

ht

ratios, and (iii) none of the actions from C are performed, as they yield negative
expected reward for the attacker. We partition all probability distributions into
regions ht = 1 − ct

ptrt
and in each region we assign actions to the classes. We

find the set of optimal attack policies for each region. The attack policies in one
region differ from each other in ordering of the actions in B.
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Fig. 4. (a) Attack policies from a CURB set for an information set for the unstructured
network. (b) Probability space partitioning by action belonging into the categories.

In Fig. 4b we show an example of the probability distribution space of three
networks in an information set. The probabilities that actions 1, 2 and 3 interact
with a honeypot represent a point (h1, h2, h3). We partition the probability space
and assign each action to a class. In all experiments we use this approach to
generate the CURB set without ZAOPs in games for unstructured networks.

6.3 Scalability

In this section we compare the runtimes of the algorithms. We present the mean
runtimes (x-axis in logarithmic scale) for each algorithm on business (Fig. 5a),
chain (Fig. 5b top) and unstructured (Fig. 5b bottom) with of 5 runs (the run-
times were almost the same for each run). We increased the number of host types
T , number of hosts n and number of honeypots k. The missing data indicate
that the algorithm did not finish within a 2 h lime limit. From ZS approximations
we show only SOZS4 since the others (SOZS1, SOZS2 and SOZS3) had almost
identical runtimes.

From the results we see that least scalable are SOGS and CSE approach. SOGS
is very slow due to the computation time of the MILP. Surprisingly, in some cases
the algorithm solved more complex game (in Fig. 5b T = 7, n = 7, k = 3)
and not the simpler game (in Fig. 5b T = 7, n = 7, k = 1). The reason is that
the more complex game requires 3 iterations to converge, while the simpler games
required over 5 iterations, after which the restricted game became too large to
solve the MILP. The CSE algorithm was the second worst. The bottle-neck is
in the incremental pruning algorithm subroutine, which took on average 91 % of
the total runtime for the business network and 80 % for the chain network. In the
unstructured network the problem specific CURB computation took only about
4 % of total runtime. The algorithms for ZS1–ZS4 and PI approximation showed
the best scalability. Further scaling was prohibited due to memory restrictions.
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Fig. 5. Comparison of approximations scalability for (a) business, and (b top) chain
and (b bottom) unstructured network. In (c), (d) and (e) we compare the defender’s
upper bound of relative regret of strategies computed with approximation algorithms
business, chain and unstructured network, respectively.

6.4 Solution Quality

In this section we analyze the quality of the strategy that each approximation
algorithm found. We use the concept of relative regret to capture the relative
difference in the defender’s utilities for using one strategy instead of another.
Formally, the relative regret of strategy σd w.r.t. the optimal strategy σ∗

d is
ρ(σd, σ

∗
d) = ud(σ

∗
d,BRa(σ

∗
d))−ud(σd,BRa(σd))

ud(σ∗
d,BRa(σ∗

d))
. The higher the regret ρ(σd, σ

∗
d) the

worse strategy σd is compared to strategy σ∗
d for the defender. We calculate the

defender’s upper bound for relative regret ρ̄ by comparing the utilities of the
computed strategies to SSEUB. Notice that the results are overestimation of the
worst-case relative regrets for the defender. In Fig. 5 we show the means and
standard errors ρ̄ of 200 runs for the business network (Fig. 5c), chain network
(Fig. 5d) and unstructured network (Fig. 5e), with T = 5, n = 5 and k = 2.
In each instance we altered the number of vulnerabilities of the host types and
host type values. The action costs ci we draw randomly from [1, 100] and action
success probabilities pi from [0, 1].

The CSE algorithm computed the best strategies with lowest ρ̄. The SOGS is
second best in all networks except unstructured. Unfortunately, these algorithms
are least scalable. The strategies computed with SOZS algorithm are within
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reasonable quality. In the business network SOZS4 performed the best among the
ZS approximations and in the chain network the computed strategies were almost
as good as the best strategies computed with the CSE algorithm. However, in the
unstructured network it performed worse. In ZS4 approximations the defender’s
utility is augmented to prefer outcomes with expensive attack policies for the
attacker. Therefore, the ZS4 approximation works well for networks where long
attack policies are produced. In chain networks the database is the furthest
from the internet and in the unstructured network is the closest. PI algorithm
computed the worst strategies in all networks. Because of the good tradeoff
between scalability and quality of the produces strategies, we decided to further
analyze the strategies computed with SOZS4 algorithm.

6.5 Quality of ZS Approximations

The zero sum approximations rely on a zero-sum assumption not actually sat-
isfied in the game. It is natural to expect that the more this assumption is
violated in the solved game, the lower the solution quality will be. In order to
better understand this tradeoff, we analyze the dependence of the quality of the
strategy computed with SOZS4 algorithm on the amount of zero-sumness of the
original game. We define a game’s zero-sumness as ū = 1

|L|
∑

l∈L(|ud(l)+ua(l)|),
where L is the set of all terminal states of the game.

In Fig. 6 we show the upper bound for relative regret ρ̄ on the y-axis for the
strategies computed by SOZS4 and amount of game zero-sumness ū on the x-axis
for 300 randomly generated game instances for the business network (Fig. 6a),
chain network (Fig. 6b) and unstructured network (Fig. 6c) with T = 5, n = 5
and k = 2. In each instance we randomly chose the attacker’s action costs ca ∈
[1, 500] and honeypot costs ch

t ∈ [0, 0.1rt], while host type values rt were fixed.
We also show the means and the standard errors of the instances partitioned by
step sizes of 50 for ū.

We show that the games with low zero-sumness can be approximated as zero-
sum games and the computed strategies have low relative regret for the defender.
For example, in a general sum game with ū = 250 the defender computes a
strategy at most 6 % worse than the optimal strategy.

Fig. 6. The defender’s relative regret dependence on game zero-sumness (computed as
average ua(l) + ud(l)) for (a) business, (b) chain and (c) unstructured networks.
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6.6 Sensitivity Analysis

The defender’s optimal strategy depends on the attack graph structure, the
action costs, success probabilities and rewards. In real-world scenarios the
defender can only estimate these values. We analyze the defender’s strategy
sensitivity computed with SOZS4 to perturbations in action costs, probabilities
and rewards in attack graphs.

We generate the defender’s estimate of the attack graph by perturbing the
original attack graph actions as follows: (i) action success probability are chosen
uniformly from the interval [pa − δp, pa + δp] restricted to [0.05, 0.95] to prevent
it becoming impossible or infallible, (ii) action costs are chosen uniformly from
interval [ca(1 − δc), ca(1 + δc)], and (iii) rewards for host t from uniformly from
the interval [rt(1 − δr), rt(1 + δr)], where pa, ca and rt are the original values
and δp, δc and δr is the amount of perturbation. The action probabilities are
perturbed absolutely (by ±δp), but the costs and rewards are perturbed relative
to their original value (by ±δcca and ±δrrf ). The intuition behind this is that
the higher the cost or reward values the larger the errors the defender could have
made while estimating them, which cannot be assumed for the probabilities.

Fig. 7. The defender’s utility regret for per-
turbed action success probabilities, action
costs, and host type values.

We compute (i) the defender’s
strategy σd on the game with the
original attack graphs and (ii) the
defender’s strategy σp

d on the game
with the perturbed attack graph.
Figure 7 presents the dependence
of the relative regret ρ(σd, σ

p
d) on

the perturbations of each parame-
ter individually (δp, δc, δr) and alto-
gether (δa). The results suggest that
the regret depends significantly on
the action success probabilities and
the least on the action costs. E.g.,
the error of 20 % (δa = 0.2) in
the action probabilities results in a
strategy with 25 % lower expected
utility for the defender than the
strategy computed based on the
true values. The same imprecision in action costs or host type rewards result
in only 5 % lower utility.

6.7 Case Study

In order to understand what types of errors individual approximations make, we
analyze the differences in strategies computed by the algorithms on a specific
game for business network with T = 5, n = 5 and k = 2. The network basis is
b = (1, 0, 1, 0, 1), where the elements correspond to the number of databases, fire-
walls, WS1, WS2 and servers, respectively. There are |X| = 15 possible networks,
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Table 2. Algorithm comparison for the case-study.

Algorithm SSEUB CSE SOGS SOZS1 SOZS2 SOZS3 SOZS4 PI

Defender’s utility −643 −645 −654 −689 −665 −676 −656 −699

Runtime [s] 2.9 3.2 6027 1.3 1.5 1.3 1.5 1.4

each selected with probability δx = 1
15 . The defender can deploy honeypots in

|Y | = 15 ways and with honeypot costs as showed in Table 1. There are 225
network settings partitioned into 70 information sets for the attacker. Table 2
presents the comparison of the strategy qualities computed with the algorithms
and their runtime in seconds. The upper bound for the defender’s optimal utility
is SSEUB = −643. The best strategy was computed with CSE algorithm with
utility ud = −645. Although the difference between the utilities is very small,
it suggests that the CSE strategy in not necessary optimal. We compare the
strategies of the other algorithms to the CSE strategy.

SOGS computed the second best strategy (ud = −654) and failed to com-
pute the optimal strategy because the restricted game lacks strategies played by
attacker in SSE. For example, both strategies from SOGS and CSE in the net-
work x1 = (3, 0, 1, 0, 1) play y1 = (0, 0, 1, 0, 1) (adds a WS1 and a server as HPs)
with probability 1. The attacker aims to attack the most valuable host (database)
either via WS1 (policy s1) or server (policy s2). Both have the same probability
of interacting with a honeypot 0.5 and a rational attacker will choose s2 to com-
promise the server as well. Attack policy s2 leads to a terminal state with the
defender’s expected utility −600. The strategy from CSE, in contrast to strategy
from SOGS, additionally plays y2 = (1, 0, 0, 0, 1) in network x2 = (2, 0, 2, 0, 1)
with probability 0.037, which leads to the same information set as action y1 in x1.
The attacker’s uncertainty between the two states in the information set changes
his optimal attack policy from s2 to s1 for that information set. Attacking via
the WS1 host type has a lower probability of interacting with the HP than via
a server, which yields the defender expected utility −538, since the server will
not be compromised. The restricted game in SOGS algorithm did not contain
strategy s1, so the computed strategy did not play y2 in x2 at all.

The PI strategy has the lowest defender’s utility as it does not exploit the
attacker’s imperfect information at all. In this game the defender always adds a
server host type as a honeypot to try to stop the attacker at the beginning. The
second honeypot is added by a simple rule: (i) if the database can be compro-
mised only via server and WS1, add honeypot of WS1 host type, otherwise (ii)
as a database host type.

SOZS4 computed the best strategy among the ZS approximations. However,
each of them have certain drawbacks. In SOZS1 and SOZS2 the defender ignores
his costs for deploying the honeypots; these strategies often add database hosts
as honeypots, which is in fact the most expensive honeypot to deploy. In SOZS2
and SOZS4 the defender prefers outcomes where the attacker has expensive
attack policies. They often deploy honeypots with motivation for the attacker
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to have an expensive costs for attack policies (e.g., a strategy computed with
SOZS2 adds database as a honeypot in 74 % while the strategy from CSE only in
43 %). Strategies computed with SOZS3 and SOZS4 are difficult to analyze. The
strategies often miss the precise probability distribution between the networks
where the attacker is indifferent between the attack policies and therefore chooses
the one in favour for the defender. There is no general error they make in placing
the honeypots as with the previous strategies.

7 Conclusion

We study a class of attack graph games which models the problem of optimally
hardening a computer network against a strategic attacker. Previous work on
attack graph games has made simplifying assumptions that the attacker has per-
fect information about the original structure of the network, before any actions
are taken to harden the network. We consider the much more realistic case where
the attacker only observes the current network, but is uncertain about how the
network has been modified by the defender. We show that modeling imperfect
information in this domain has a substantial impact on the optimal strategies
for the game.

Unfortunately, modeling the imperfect information in attack graph games
leads to even larger and more computationally challenging games. We introduce
and evaluate several different approaches for solving these games approximately.
One of the most interesting approaches uses a relaxation of the optimal MILP
solution method into an LP by removing the constraint that attackers play pure
strategies. This results in a polynomial method for finding upper bounds on the
defender’s utility that are shown to be quite tight in our experiments. We are
able to use this upper bound to evaluate the other approximation techniques on
relatively large games. For games that are close to zero-sum games, the zero-sum
approximations provide a good tradeoff between scalability and solution quality,
while the best overall solution quality is given the by the LP relaxation method.
Several of these methods should generalize well to other classes of imperfect
information games, including other types of security games.
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7. Bošanský, B., Čermak, J.: Sequence-form algorithm for computing stackelberg
equilibria in extensive-form games. In: Proceedings of AAAI Conference on AI,
pp. 805–811 (2015)

8. Carroll, T.E., Grosu, D.: A game theoretic investigation of deception in network
security. Secur. Commun. Netw. 4(10), 1162–1172 (2011)

9. Cassandra, A., Littman, M.L., Zhang, N.L.: Incremental pruning: a simple, fast,
exact method for partially observable markov decision processes. In: Proceedings
of UAI, pp. 54–61. Morgan Kaufmann Publishers Inc. (1997)

10. Conitzer, V., Korzhyk, D.: Commitment to correlated strategies. In: Proceedings
of AAAI, pp. 632–637 (2011)

11. Conitzer, V., Sandholm, T.: Computing the optimal strategy to commit to. In:
Proceedings of ACM EC, pp. 82–90. ACM (2006)
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