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Abstract. An attack graph represents all known sequences of actions that compro-
mise a system in form of an and-or graph. We assume that each action in the attack
graph has a specified cost and probability of success and propose an algorithm for
computing an action selection policy minimizing the expected cost of performing
an attack. We model the problem as a finite horizon MDP and use forward search
with transposition tables and various pruning techniques based on the structure of
the attack graph. We experimentally compare the proposed algorithm to a generic
MDP solver and a solver transforming the problem to an Unconstrained Influence
Diagram showing a substantial runtime improvement.
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Introduction

Attack graphs (AG) are a popular tool for analysing and improving security of computer
networks, but they can be used in any domain, where attacks consist of multiple inter-
dependent attack actions. Attack graphs capture all the known sequences of actions that
may lead to compromising a system, and they can contain additional information, such
as the cost of individual actions and the probability that the actions will be successfully
executed. AGs can be used to evaluate risks and design appropriate countermeasures.

In analysis of attack graphs, it is often of interest to identify the optimal strategy of
the attacker (i.e., which actions to execute in what situation) and its expected cost. For
example, comparing the expected cost of the attack to the expected reward of successfully
compromising the target indicates if a rational attacker would attack the system at all [3].
In penetration testing, following the optimal attack strategy can save a lot of valuable
time [7]. Computing the optimal strategy for the attacker is also a building block in
solving various game-theoretic models of interaction between the attacker and defender
of a system. Furthermore, a problem of computing the optimal attack strategy can also be
seen as a complex variant of the generic problem of probabilistic and-or tree resolution
analysed in AI research [4].

In this paper, we propose an algorithm for computing the optimal attack strategy
for an attack graph with action costs and failure probabilities. Unlike previous works
assuming that the attack graph is a tree (e.g, [7]) and/or computing only a bound on
the actual value (e.g., [3]), we compute the exact optimum and we do not impose any



restriction on the structure of the attack graph. Specifically, our approach allows the
attack graph to contain (even oriented) cycles and to have actions with probabilities and
costs as inner nodes of the attack graph.

The drawback of our approach is that even a simplified variant of this problem has
been shown to be NP-hard in [4]. As a result, we solve it by a highly optimized search
algorithm and experimentally evaluate its scalability limitations. We show that the prob-
lem can be mapped to solving a finite horizon Markov decision process (MDP) and how
the information about the structure of the attack graph can be used do substantially prune
the search space in solving the MDP. We compare the proposed approach to recently
published method for solving this problem [6] and to a recent version of a generic MDP
solver from the International Planning Competition 2011 [5], showing that the proposed
method scales orders of magnitude better.

1. Background and Definition

1.1. Attack Graph

AG is a directed graph consisting of two types of nodes: (i) fact nodes, that represent
facts that can be either true or false, and (ii) action nodes, that represent actions that
the attacker can perform. Each action has preconditions – a set of facts that must be
true before action is performed and effects – a set of facts that becomes true if action is
successfully performed. Moreover, every action has associated probability p ∈ (0,1] –
which denotes the probability that action succeeds and its effects become true, and with
probability 1− p action fails and attacker cannot repeat this action anymore. We assume
that attacker cannot repeat actions for couple of reasons: (i) if actions are correlated and
have static dependencies (installed software version, open port, etc.), another attempts to
use the same action would result alike, and (ii) if we allow infinitely many repetitions,
optimal attack policy (explained further) would collapse into a linear plan with attempt-
ing for each action until action succeeds[3]. Finally, each action has associated cost c; if
attacker decides to perform action a, he will pay the cost c, regardless whether the action
is successful or not.

Definition Let Attack Graph be a 5-tuple AG = 〈F,A,g,p,c〉, where:

• F is a finite set of facts
• A is a finite set of actions, where action a : pre→ eff, where pre ⊆ F is called

preconditions (we refer to them as pre(a)) and eff⊆ F is called effects we refer to
them as eff(a)

• g ∈ F is the goal
• p : A → (0,1] is the probability of action to succeed (we use notation pa for

probability of action a to succeed, and with pā = 1− pa the probability of action
to fail)

• c : A→ R+ is cost of the action (we use notation ca for cost of the action a).

We use the following terminology: we say that fact f depends on action a if f ∈ eff(a),
and similarly, action a depends on f if f ∈ pre(a)

Example of such Attack Graph is in Fig. 1. Diamonds are the inner fact-nodes, that
are initially false, but can be activated performing any action on which the facts depend
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Figure 1. Simple attack graph which shows possible ways how to achieve access to the database (fact node
”Access DB”). Diamonds are the inner fact-nodes (initially false) that can be turned true, while rectangles
are the leaf fact nodes, which are always true. Ellipses depict actions that attacker can perform with success
probability p and cost c.

upon. Rectangles represent leaf fact-nodes, that are initially true. Ellipses are the actions
that attacker can perform with probability of success p and cost c. In our example we
represent action with its name and the couple (p,c). Attacker’s goal is to activate fact
”Access DB” (obtain an access to DB).

The probabilities and costs of the actions can be obtained using Common Vulnera-
bility Scoring System (CVSS)1 from, i.e., National Vulnerability Database, which scores
different properties of vulnerabilities. Probabilities could be computed for example from
the access complexities, exploitabilities or availability impacts of the vulnerabilities,
whereas costs could be computed from number of required authentication in order to a
vulnerability, etc.

1.2. Attack Policy

Solving the AG means to find a policy, that describes what action should attacker perform
in every possible evolution of the attack procedure. Fig. 2 depicts optimal policy ξopt
for the problem from Fig. 1, where attacker first attempts to perform action ”Send MW

Email”; if action is successful, he follows the right (sub)policy (solid arc), thus perform-
ing action ”Remote Exploit”, otherwise the left (sub)policy (dashed arc), thus action
”Exploit Firewall”, and so on.

Definition An attack policy is an oriented binary tree ξ for evaluating attack graph AG.
Nodes of ξ are actions, arcs are labeled + or solid line (if parent action was successful)
and− or dashed line (if parent action was unsuccessful), and whose leaf-nodes are either
� resp. � representing successful reps. unsuccessful attack.

1www.first.org/cvss
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Figure 2. Optimal policy for a simple attack graph from Fig. 1. Attacker should follow solid arcs if previous
action was successful, otherwise follow dashed line. Values at arcs represent the expected costs for attacker.

Definition The expected cost of an attack policy ξ is a cost over all possible evolutions
of the policy. Let φχ be (sub)tree of ξ rooted at a node χ labeled with an action a, then
expected cost of φχ can be computed recursively as follows:

E (φχ) = ca + pa×E (φχ+)+ pā×E (φχ−)

where φχ+ (φχ−) is the subtree rooted at χ’s + branch (− branch) and in the leaf-nodes of
the policy is a penalty if attack is unsuccessful E (�) = penalty and reward if successful
E (�) = reward.

When we decide which of the two policies, either φχ rooted at χ labeled with an action
a or φψ rooted at ψ labeled with action b have lower expected cost, we assume that after
performing action a, resp. b, attacker follows an optimal policy. In this case, we override
our notation of E (φχ) resp. E (φψ) to simply E (a) resp. E (b).

We assume that our attacker is a motivated attacker, that is they continue in attack as
long as there are actions that may lead to the goal, regardless of the cost of the attacks.
Motivated attacker ceases the attack only when there is no sequence of actions that could
result in achieving the goal. Having assumed this type of attacker and the fact that attacks
are monotonic, meaning that consequence of attack preserves once is achieved [1] (once
the fact becomes true, it cannot become false again), it can be shown that every policy,
regardless on the order of the action, will have equally the same probability of achieving
the goal. Note, that the expected cost of the policy consist of two parts: the probability
of achieving the reward or the penalty and the expected cost of the action costs. The
probability of successful attack is always the same, thus every policy will have the same



expected cost of the penalty/reward. Thus, it essentially makes no difference whether we
choose to reward the attacker for successful attack or penalize for an unsuccessful attack.
In fact, distinct policies have different expected costs only because of the different action
ordering which imposes different sequences of their costs.

Definition A policy ξopt is optimal if it has the minimal expected cost among all possible
policies, thus ∀ξ ∈ Ξ : E (ξopt)≤ E (ξ ), where Ξ is a set of all policies.

Proposition 1.1 In the optimal policy ξopt for every (sub)policy φχ rooted at a node χ

labeled with an action a following is true: E (φχ)≤ E (φχ−).

We will prove it by contradiction. Assume that E (φχ)> E (φχ−) is true. Then due to the
monotonicity property the attacker could have followed the (sub)policy φχ− even before
performing action a, which would have saved him the cost of the action ca. But then this
new policy would have had lower expected cost than the policy φχ , which violates our
assumption that φχ is an optimal policy.

Proposition 1.2 In the optimal policy ξopt for every (sub)policy φχ rooted at a node χ

labeled with an action a following is true: E (φχ−)≥ E (φχ+).

E (φχ) =ca + pa ∗E (φχ+)+ pā ∗E (φχ−) (1)

E (φχ−)≥ca + pa ∗E (φχ+)+ pā ∗E (φχ−) (2)

E (φχ−)≥ca + pa ∗E (φχ+)+ ca/pa (3)

1.3. Markov Decision Process

We solve this problem by modeling it as Markov Decision Processes (MDP) [2] which
is defined as 4-tuple 〈S,A,P·(·, ·),R·(·, ·)〉, where:

• S is a finite set states, in our case state is a set of performed actions and label
whether the action a was successful (a) or not (ā);

• A is a set of actions, which is equal to the set of actions in the attack graph
• Pa(s,s′) is a probability that action a, performed in state s, will lead to state s′; in

our case, if action a, with probability pa is successful, then state s′ = s∪{a}; if
action a is unsuccessful, then state s′ = s∪{ā}

• Ca(s,s′) is an immediate cost payed after transition to state s′ from state s; in
our case Ca(s,s′) = ca in all transitions, except when s′ is a terminal state, then
Ca(s,s′) = ca−reward if goal is achieved in s′ and Ca(s,s′) = ca+ penalty if goal
is not achieved in s′.

Optimal solution is such a policy of MDP, that minimizes an overall expected cost.

2. Algorithm

2.1. Basic Approach

Basic approach is to use MDP with finite horizon, e.g. exhaust every possible ac-
tion at every decision point and select action having minimal expected cost. In fact,



we use this approach with several pruning techniques which speed up this computa-
tion. In Fig. 3 is an example of MDP search of our running example from Fig 1.
The root of the MDP is a decision point where we need to decide which of the ac-
tion among "Exploit Firewall", "Send MW Email" and "Create Dictionary"

is the best to perform. In a naive approach we explore every possible scenario and
compute their expected costs E ("Exploit Firewall"),E ("SendMW Email") and
E ("Create Dictionary"). We choose the action with the minimal expected cost.
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+
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...

Figure 3. In naive approach we explore every possibility and select action having minimal expected cost.

For performance enhancement, we make use of transposition tables, that is: we
cache states for which we have computed expected cost and an optimal (sub)policy and
reuse these results in future, should we encounter the same state again.

2.2. Sibling-Class Theorem

In [4] authors deal with ”probabilistic and-or tree resolution” (PAOTR) problem, mainly
for and-or trees with independent tests without preconditions, for which they constructed
and proved the Sibling-Class Theorem. Independently, authors in [3] show the same the-
orem. The Sibling-Class Theorem states, that the leaf-node actions can be grouped into
the sibling-classes within which actions’ ordering can be determined by simply sorting
their R-ratios; hence, no state-search exploration is necessary within sibling-class, only
between the sibling classes. Two actions belong to the same sibling class if they have
common parent in the and-or tree. As they consider inner nodes to be either AND or OR
node, naturally there are two types of sibling classes: the AND-sibling classes and the
OR-sibling classes. R-ratios of an action is computed as follows:

R(a) =
pa

ca
if action a is in OR-sibling class (4)

R(a) =
pā

ca
if action a is in AND-sibling class (5)

Conjecture 2.1 Sibling-Class Theorem for and-or trees without preconditions can be
applied to an and-or graph with precondition using following rules for creating OR-
Sibling Classes:

• actions a and b belong to the same OR-Sibling class iff: pre(a) = pre(b) ∧
|pre(a)|= |pre(b)|= 1.

and following rules for AND-Sibling Class:

• action a and b belong to the same AND-Sibling class iff: pre(a) 6= pre(b) ∧
|pre(a)|= |pre(b)|= 1∧ (∃c ∈ A : pre(a) ∈ eff(c)∧pre(b) ∈ eff(c)).



Action a∈A cannot be pruned iff: |pre(a)|> 1∨(∃c1,c2 ∈A : c1 6= c2∧ pre(a)∈ eff(c1)∧
pre(a) ∈ eff(c2)).

The Sibling Theorem is proved only for and/or trees, while we empirically checked and
use it for and/or graphs.

Example Assume we have the same problem as in Fig. 3 and we come to the same
decision point as previously. But now we computed R("Exploit Firewall") = 0.27

5.0 =

0.054, R("Send MW Email") = 0.23
2.0 = 0.115 and R("Create Dictionary") = 1.0

11.0 =
0.091 and we know that actions "Exploit Firewall" and "Send MW Email" have
the same parent node "Net Access", thus belong to the same OR-sibling class, while
action "Create Dictionary" belongs to a separate sibling class. Now we explore only
actions that have maximum R-ratios in each sibling class, thus only actions "Send MW

Email" and "Create Dictionary", and action "Exploit Firewall" surely will not
be the first action in the optimal policy. Fig. 2.3 depicts nodes that must be explored
(white nodes), and nodes that are pruned (grey nodes).
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Figure 4. This figure presents nodes that are explored (white) and nodes that can be pruned (grey) in the MDP
search if we know that actions "Exploit Firewall" and "Send MW Email" are in the same sibling class
and action R-ratios.

2.3. Branch and Bounds

As another pruning technique we use branch and bounds. For this technique we reuse
previously computed expected costs of the subtrees of the MDP to prune future subtrees
if know that an optimal solution cannot exist there. Specifically, when we face the deci-
sion either utilize (sub)policy φa – starting with an action a – or (sub)policy φb – starting
with action b – we choose policy φb only if E (φb)< E (φa), implying:

E (φb)< E (φa) (6)

cb + pb ∗E (φb+)+ pb̄ ∗E (φb−)< E (φa) (7)

cb + pb ∗E (φb+)+ pb̄ ∗E (φb+)< E (φa) (8)

cb +E (φb+)< E (φa) (9)

E (φb+)< E (φa)− cb (10)

where from (8) to (9) we used property of the optimal policy that E (φb+)≤ E (φb−), and
then fact that pb + pb̄ = 1. Thus, E (φa)− cb is an upper-bounds for E (φb+). If anytime



during the computation it exceeds this bound, we can immediately stop the computation
of the b+ branch.

Similarly, having computed the E (φb), we can bound again the branch E (φb−) as
follows

E (φb)< E (φa) (11)

cb + pb ∗E (φb+)+ pb̄ ∗E (φb−)< E (φa) (12)

pb̄ ∗E (φb−)< E (φa)− cb− pb ∗E (φb) (13)

E (φb−)< (E (φa)− cb− pb ∗E (φb))/pb̄ (14)

Example Assume different example, where we face the problem of choosing the best
(sub)policy φa, φb, φc and φd . Branches E (φa+) and E (φa−) we must compute to obtain
E (φa). Next, we compute expected cost E (φb+) and assume that it turns out to be higher
than E (φa), hence, we can prune the computation of the branch b−, as action b will never
have less expected cost then action a. Next, let’s say E (φc+) in the branch c+ turned out to
be lower than E (φa). It means that we can upper bound the E (φc−) by E (φa)−cc−pc∗E (φc)

pc̄
.

Let’s say that E (φc−) obeyed the bound, thus, action c is the best action that attacker can
perform so far. Note, that it is unnecessary to compute total expected cost of E (φc) to
determine that it is lower then E (φa), it is direct implication from the fact that it satisfied
both bound conditions. Finally, during the computation of branch d+ it turned out to
violate new upper bound E (φc)−cd , thus its computation was terminated and branch d−

was pruned as well.
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Figure 5. This figure presents nodes that are explored (white) and nodes that can be pruned (grey) due to the
branch and bound technique.

2.4. Heuristics

Finally, we designed heuristic approach to compute the lower bound of the expected
cost of an attack graph by setting costs of the actions to zero and taking into account
only the actions’ probabilities. This relaxation gives us freedom in action ordering as
any (valid) ordering will produce exactly the same probability of success of the policy
and thus the overall expected cost. We use this heuristics in two ways: (i) if computed
heuristics exceeds the given upper bound, this branch of computation can be pruned, and
(ii) according the heuristics we order the action in which we compute remaining actions’



expected costs. If we start with the most promising action, more of the future branches
might get pruned.

Nevertheless, we came across an issue in this approach due to the fact that our attack
representation is not a tree but a directed cyclic graph. Which means that performing an
action can be beneficial in several possible branches at once if action has more then one
root-node paths in the attack graph, which results, that the probability of the action will
be count multiple times into the overall probability of success is increased. This causes
expected cost, computed as (1− probability)∗ penalty to decrease. Since we minimize
the expected cost this issue keeps the heuristics still admissible.

3. Experiments

We experimentally compared our algorithm with two other approaches, namely Uncon-
strained Influence Diagrams, and using probabilistic planner from International Planning
Competition.

3.1. Guido approach

This approach, described in [6], converts an attack graph into an Unconstrained Influence
Diagrams (UID) — a graphical representation of a decision situations using probabilistic
interference — upon which existing solvers can be run. We ran a Guido solver as de-
scribed in the article. This approach showed to be insufficiently scalable for the problems
with large (>20 actions) attack graphs.

3.2. Probabilistic planning

As an other approach, we decided to use a domain independent probabilistic planner
SPUDD that competed in International Plannign Competition (IPC) in 2011. SPUDD
is based on iterative value computation of MDP and uses own specification language.
Since it computes MDP, it needs to have set either discount factor γ = [0,1), or γ = 1
and the horizon set to an integer. For our purposes, discount factor γ must be set to 1,
hence horizon had to be chosen appropriately. To ensure that SPUDD finds an optimal
solution, we chose to set the horizon to number of actions in the attack graph.

3.3. Experiment settings

We experimentally ran and compared our algorithm DynProg, Guido and SPUDD ap-
proaches on the three different realNetwork frameworks with different configurations.
We ran experiments on Intel 3.5GHz with memory resource up to 10GB. In DynProg
we set the penalty = 109 and reward = 0. In Tab. 1 we present running times of each
approach.

4. Conclusion and Future Works

Our algorithm showed to outperform other two approaches in time complexity and scal-
ability. Unfortunately, it ofter runs out of the memory due to the transposition tables and



Problem DynProg [ms] Guido [ms] SPUDD [ms]

Local+2 51 85 1000

Local+3 155 546 11000

Local+4 443 76327 70000

Local+5 5389 (OoM) 656000

Local+6 (OoM) (OoM) 6152000

Cross2 4 408 1000

Cross3 38 23796 9000

Cross4 504 (OoM) 287000

Cross5 3587 (OoM) 8373000

Cross6 60351 (OoM) (OoT)

LocalChain3-3 0 9 0
LocalChain4-4 0 70 1000

LocalChain5-5 0 1169 3000

LocalChain6-6 0 17133 23000

Table 1. Time comparison of DynProg, Guido and SPUDD approaches over three types of problems with
different complexities. Shortcuts: (OoM) - Out of Memory, (OoT) - Out of Time (> 107ms).

very large search state-space anyway. Other optimizations can be proposed, as better rep-
resentation of a state or more accurate heuristics for better pruning. This algorithm can
be used in game theoretic manner in couple of ways. Here we present two directions: (i)
determine what honeypot configurations maximize the probability that an attacker would
be detected during their attacks on the realNetwork and (ii) for security hardening de-
termining which subset of vulnerabilities should administrator fix in order to secure the
realNetwork, that is, that for the attacker it is not worth to attack to begin with.
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