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Abstract

Deterministic domain-independent planning techniques for
multiagent systems stem from principles of classical plan-
ning. Three most recently studied approaches comprise (i)
DisCSP+Planning utilizing Distributed Constraint Satisfac-
tion Problem solving for coordination of the agents and in-
dividual planning using local search, (ii) multiagent adapta-
tion of A* with local heuristics and (iii) distribution of the
GraphPlan approach based on merging of planning graphs.
In this work, we summarize the principles of these three ap-
proaches and describe a novel implementation and optimiza-
tion of the multiagent GraphPlan approach. We experimen-
tally validate the influence of parametrization of the inner ex-
traction phase of individual plans and compare the best results
with the former two multiagent planning techniques.

Introduction
The problem of multiagent planning as defined in (Brafman
and Domshlak 2008) is similarly important as classical plan-
ning, as it can provide generally usable techniques for in-
telligent agents, which are required to cooperatively come
up with distributed plans. Recently the research community
proposed both theoretical treatments and implementations of
such distributed multiagent planning (DMAP) techniques.

Similarly to the classical planning, the agents in DMAP
cooperatively search for the local sequences of actions,
which after execution transform the world from an ini-
tial state to a common goal state. The local sequences of
actions—the local plans—has to interleave appropriately, as
each particular agent cannot possibly solve the problem on
its own, but have to base its own actions on the results of
actions of the other agents. Furthermore, the agents are mo-
tivated to communicate as few information as possible not
to put load on the other agents if it is not needed.

Three recently theoretically treated approaches for
DMAP are (i) multiagent planning utilizing a solver for Dis-
tributed Constrain Satisfaction Problems (DisCSP) for the
coordination part and a classical planning for the individual
plans denoted as DisCSP+Planning (Brafman and Domsh-
lak 2008), (ii) extension of A* for multiagent systems coined
Multiagent Distributed A*, (MA-A*) (Nissim and Brafman
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2012a; 2012b) and (iii) Distributed Planning through Graph
Merging (DPGM) (Pellier 2010) which uses principally the
same factorization scheme for separation of parts of the orig-
inal planning to more agents as in the previous approaches,
defined originally in (Brafman and Domshlak 2008) together
with the MA-STRIPS formalization.

First two approaches, namely DisCSP+Planning and MA-
A*, were already implemented and experimentally vali-
dated. Works describing the implementation and experi-
ments are for DisCSP+Planning (Nissim, Brafman, and
Domshlak 2010) and for MA-A* the original papers (Nis-
sim and Brafman 2012a; 2012b). However, according to our
knowledge, the Pellier’s approach was not implemented and
experimentally verified yet. Therefore, our initial focus in
context of this work was the implementation of the approach
described by Pellier and comparing it with the other two ap-
proaches. Since this comparison was not done yet, it was
not clear if the GraphPlan (Blum and Furst 1997) approach
could be viable in multiagent setting, although the under-
lying approach in classical planning was outperformed al-
ready at (IPC 2004). Especially as in the multiagent setting
the communication complexity can be of much more impor-
tance than the computational complexity.

Multiagent planning
Planning in a multiagent (MA) systems is by (Brafman and
Domshlak 2008) a search for a plan for each agent, assuming
that agents have to cooperate in order to reach a global goal.
Formally, problem for a set of k agents AG = {agi}ki=1

is given by a quadruple Π = 〈P, {Aagi}ki=1, I, G〉, where
P is a finite set of propositions describing facts holding
in the world; I ⊆ P is a set of propositions that hold
in the initial state; G ⊆ P is a set of propositions that
must hold in a goal state; and Aagi is a set of actions
that an agent agi can perform. Each action has a standard
STRIPS syntax, i.e., a = 〈pre(a), add(a), del(a)〉, where
pre(a), add(a), del(a) ⊆ P and add(a) ∩ del(a) = ∅. An
action a can be performed only in a state s ⊆ P , which the
propositions form pre(a) hold in. Performing an action a
will add to the state s propositions from add(a) and remove
the propositions from del(a).

DisCSP+Planning-based planner The algorithm
from (Nissim, Brafman, and Domshlak 2010) can be



described as two interleaving components, a coordination
component and an individual planning component; both of
which require the separation of the public and individual
actions of each agent. An action a of an agent agi is public
if there exists an action b of an agent agj , i 6= j, such that
(pre(a)∪ add(a)∪ del(a))∩ (pre(b)∪ add(b)∪ del(b)) 6= ∅,
otherwise the action is considered individual. This separa-
tion defines the multiagent problem factorization.

The coordination component deals only with the public
actions. It searches for a sequence of the interaction points
between the agents’ plans. For a given length of the public
part of the plan δ, it tries to assign different public actions
of each agent in the different time-steps so that the global
goal is satisfied. This is the interaction part, so the result-
ing plan of each agent has to satisfy the requirements put by
the rest of the agents and vice versa. These requirements are
described in form of coordination constraints in the inner
DisCSP problem. Solving this problem effectively means
solving the multiagent planning problem. If some agent or
the team as a whole can not solve the DisCSP, then δ, the
length of the coordination public part of the plan is increased
by one and the whole process is repeated.

The individual planning component forms the other type
of constraints for the DisCSP process encoding the require-
ment of the local parts of the plan. The individual planning
constraints limits usage of the public actions in the coordi-
nation part of the plan such that the gaps between them can
be filled by sequences of individual actions of the agents.

Multiagent A* The algorithm proposed in (Nissim and
Brafman 2012b) is inspired by the well-known A* al-
gorithm. Similarly to centralized A* the Multiagent Dis-
tributed A* (MA-A*) maintains open lists for all agents, that
keep track of the so far unvisited states, and closed lists, that
keep track of the already visited states. Each agent also uses
a local heuristic to decide which state from the open list it
should expand as next. As stated in the paper, each agent can
use different heuristics.

In the MA-A*, similarly to the DisCSP+Planning, it is
firstly necessary to separate every agents’ public and indi-
vidual actions. The algorithm runs simultaneously for each
agent. During the search, the agents send messages to each
other to distribute the search at the points, where the other
agents can follow. Effectively, it means the messages are sent
only for states achieved by public actions. Each such mes-
sage consists of a state s, its cost value gagi(s) and a heuris-
tic estimate hagi(s). In decoupled problems, this principle
allows distribution of the knowledge about the entire search
space among the agents. When an agent receives a message
with a state s, it decides either to: visit the state (by adding
it to its open list), update its knowledge about s, or discard
it if it knows better path to the state.

The search terminates if an agent expands a state which
is compatible with the goal set G and the resulting plan is
ensured to be globally optimal.

Distributed Planning through Graph Merging The al-
gorithm DPGM presented in (Pellier 2010) uses as the main
data structure a planning graph together with the distributed
versions of algorithms for its building and for extraction

of the resulting plan. The distributed extraction consists
of a individual CSP and a distributed coordination mech-
anism. The planner as a whole can be described by fol-
lowing five phases: global goal decomposition, expansion,
planning graph merging, individual plan extraction, coor-
dination. The result is in form of a coordinated individual
solution plan.

In the first phase, the global goal decomposition, each
agent creates an individual goal, i.e., a subset of the propo-
sitions from the global goal that it can reach. Proposition
p ∈ G is in the individual goal Gagi of an agent agi if exists
an action a ∈ Aagi such that p ∈ add(a). If any proposition
from the global goal cannot be assigned to any agent, the
problem has no solution.

In the next two phases, the expansion and the planning
graph merging, every agent builds an individual planning
graph via GraphPlan algorithm (Blum and Furst 1997).
Firstly, every agent builds a new layer in their planning
graphs. Afterward, relevant actions from the new layer are
shared among the agents. The shared actions are included
into their respective planning graphs. An action aagi ∈ Aagi
is relevant to an agent agj in two cases: (i) pre(aagi) con-
tains a proposition that another action aagj ∈ Aagj uses in
del(aagj ) or add(aagj ), then the action aagi promotes the
action aagj or (ii) del(aagi) contains a proposition that an-
other action aagj ∈ Aagj uses in pre(aagj ) or add(aagj ),
then the action aagi threats the action aagj . The algorithm
alternates between the expansions, where all the agents build
new layers in their planning graphs and planning graph
merging, where all the agents share their actions until all
agents reach their individual goals in their planning graphs
or the fixed point is reached.

In the individual plan extraction phase, each agent ex-
tracts plan(s) from its planning graph. In the centralized
GraphPlan algorithm, this is done by compilation of the
problem into a CSP and solved by a CSP solver. Each result
from the solver is then one resulting plan as Kambhampati
showed in (Kambhampati 2000).

In the last two coordination phases, before an agent
agi generates an individual plan, it includes requirement
and commitment constraints—induced by the other agents’
plans—into its individual plan extraction CSP problem. The
requirement constraints are couples (a, l) which describe an
action a has to be performed in l-th layer. As req(πagi), we
will denote a set of requirement constraints induced by the
current partial plan πagi of the agent agi. A partial plan πagi
in this phase contains finished parts from agents 1, . . . , i
and future actions required by the agent agi (and possibly
from previous agents) for the following agents i+ 1, . . . , k.
The commitment constraints are again couples (a, l) denot-
ing that no action b, which is in mutex with action a, can be
performed in l-th layer. Let com(πagi) be a set of the com-
mitment constraints induced by the current partial plan πagi .

A couple c = (com(πagi), req(πagi)), besides represent-
ing the partial plan πagi in form of the action commitments
and requirements, describes which agents have already con-
tributed to the plan πagi with their individual plans (the per-
formers of the actions in com(πagi)) and which agents have
not (the performers of the actions in req(πagi) but not in



Figure 1: The DPGM plan search process.

com(πagi)). Such common partial plan in form of require-
ment couple c is passed from one agent to another. Each
agent extends it with its individual plan and possibly new
requirements for the following agents. After c passes all the
agents, it contains a global plan consisting of the individual
plans of all the agents.

Assume the agents are ordered ag1, ag2, . . . , agk, as il-
lustrated in Figure 1. The phase starts with an agent ag1
which generates its first plan πag1—lower index indicates
the owner of the individual plan. The agent computes the
commitment and requirement constraints, denoted as cag1 =
(com(πag1), req(πag1)) and sends them to the next agent
ag2. ag2 includes constraints cag1 into its CSP problem
as additional constraints and generates a plan πag2 which
is compatible with the plan πag1 . Next, ag2 derives new
constraints cag2 = (com(πag1) ∪ com(πag2), (req(πag1) ∪
req(πag2)), and passes them to the agent ag3, and so on.
In Figure 1, the search would actually end with generating
agk’s plan πagk which illustrates the ideal way of the solu-
tion, since no agent had to generate a variance of its plan
more than once to fulfill all the requirements from previous
agents. If agent ag3 could not generate plan πag3 , algorithm
would backtrack to agent ag2, who would generate an alter-
native plan π′

ag2 , as shown in the figure. If all agents ran out
of plans, algorithm return to expansion and planning graph
merging, and whole search repeats again.

Implementation
In (Pellier 2010), the author introduces theoretically the al-
gorithm, yet no experiments were carried out to verify its
efficiency. Besides the implementation of the algorithm in
Java programming language, we included some implemen-
tation improvements to speed up the algorithm.

Constraint cache To reduce the search tree, as illustrated
in Figure 1, each agent memorizes the constraints it passed
to the next agents. If the constraints caused one of the fol-
lowing agents is not able to generate any plan, the requesting
agent do not require such constraints for the next agents any
more.

For an instance depicted in Figure 1, at point when agent
ag2 generates plan πag2 together with its constraints cag2 , he
memorizes the constraints cag2 before passing them to ag3.
Let us assume that the constraints caused ag3 to be unable
to generate any individual plan depicted as ∅. The agent ag2
memorizes this information and introduces new constraint
into his CSP assignment that will eliminate generating of
plans that restricts the agent ag3 in future as cag2 did.

For an instance, cag2 = ({}, {(aag3 , 1), (aag4 , 2)}),
where (aag3 , 1) restricts ag3 to perform action aag3 in first
layer and (aag4 , 2) restricts ag4 to perform action aag4 in
second layer. Since ag3 could not find any plan that satis-
fies restriction (aag3 , 1), agent ag2 should not generate such
plans. Thus, ag2 introduces new constraint into its CSP as-
signment that will eliminate plans having action aag3 in first
layer. This will cause agent ag2 to eliminate generating of
the plans that agent ag3 cannot satisfy.

Ordering of agents Ordering of the agents turned out to
be crucial for the DPGM algorithm to work efficiently. It
is necessary to separate agents that have an individual goal
from those that have no goal, but whose cooperation might
be required somewhere during the plan. Let AGg be a set
of all agents having an individual goal and let AGs be a
set of all agents without their own goals. As the plan search
progresses, the actual agents’ ordering dynamically changes.
The ordering starts with a random agent agi from the set
AGg (the set cannot be empty at this point; if it was, we have
no goal, therefore the problem would be unsolvable). After-
ward, a plan πagi is generated together with constraints cagi .
Next, agent agj is selected by looking which cooperation is
required in cagi . If there are more such agents, they are prior-
itized fromAGg over the agents fromAGs. After generating
new πagj and cagj , the process is repeated. If cagj has no re-
quirements on the other agents at any point, although AGg

or AGs are not empty yet, it means that there exists a goal
reaching plan without cooperation of the agents remaining
in AGg and AGs sets. Notice that this may happen even for
AGg , although we said that these are the agents with goals,
if a goal proposition can be reached by more than one agent
and an agent outside AGg has reached it.

Removing unnecessary actions Since we used pure
PDDL parser to read the domain and the problem, we
could end up with useless actions. For example, in the
simplest LOGISTICS problem these actions are following:
(drive car1 place1 place1) or (fly plane1 airport1 air-
port1). These actions do not change the state in any way.
Preconditions of an action (drive car1 place1 place1) are
(at car1 place1), a positive effect is (at car1 place1) and
a negative effect is (at car1 place1). A result of this actions
is that the car will remain in the same place (so does the ac-
tion (fly plane1 airport1 airport1) with the plane). These
actions can be generalized as a = 〈pre(a), add(a), del(a)〉,
where add(a) = del(a). Moreover, actions (as STRIPS de-
fines them) have a requirement add(a) ∩ del(a) = ∅, but a
pure PDDL parser cannot hold this requirement while pars-
ing. Hence, these actions had to be removed by the algo-
rithm.

Experiments
The experiments were carried out on five different domains,
where three originated from the International Planning Com-
petition benchmarks adapted for the multiagent planning:
ROVERS, LOGISTICS, and SATELLITES. The additional two
are: LINEAR LOGISTICS (one package has to be transported
step-wise by all agents in a chain) and DECONFLICTION



domain-agents Minion Minion srf Choco comm.
rover-a2 8.9s 3.8s 11.7s 69kB
rover-a3 6.6s 20.3s 17.4s 234kB
log-a4 0.9s 0.3s 1.2s 34kB
log-a6 0.7s 0.6s 1.3s 136kB
log-lin-a6 0.5s 0.5s 0.3s 167kB
log-lin-a8 0.7s 0.7s 0.5s 417kB
log-lin-a10 0.9s 0.9s 0.7s 849kB
log-lin-a15 1.6s 1.6s 1.8s 2.9MB
deconf-a2 – 1.3s – 18kB
deconf-a3 0.2s 0.2s 0.1s 13kB
satellite-a6 1.6s 1.5s 4.6s 266kB
satellite-a8 5.0s 4.3s 24.8s 793kB
satellite-a10 14.3s 12.7s 101s 1.8MB

Table 1: Comparison of CSP solvers used in DPGM. The dash –
means that the time or memory limit was exceeded.

(robots on a grid are tasked to switch its positions with op-
posite ones, not colliding with each other). Each domain was
tested on several problems with various numbers of agents.
All experiments were run on 8-core processor at 3.6GHz
with 2.5GB limit on memory and 10 minutes time limit. We
used time and communicated bytes as metrics for the com-
parison of the algorithms.

Comparison of used CSP solvers in DPGM
As DPGM algorithm uses CSP solver for the local plan
extraction, we experimented which solver would serve the
best. Two CSP solvers were tested: Choco CSP Solver1

and Minion CSP Solver2. Choco solver was tested with its
basic setting, while Minion was tested with and without
smallest-ratio-first (srf ) variable order. Table 1 shows the
times DPGM took to solve the problems using certain CSP
solvers and settings. Although Minion solver showed to be
sometimes unstable and did not return any result over the
longer period of time, DPGM was faster with it than with
the Choco solver. Another Minion’s disadvantage is that if
a problem is unsolvable, it is inefficiently detected, since it
has to go through all the possibilities in the search space.
Last column (comm.) in Table 1 shows the communicated
bytes among the agents. As the CSP solver is used only for
local extraction of a plan, the numbers are the same for all
the solvers. In the deconf-a3 problem, even the number of
agents is higher than in deconf-a2, the results are better.
This is caused by the particular problem instance, where the
agents in the a2 case has to pass by each other, and therefore
the solution is found not before 4th layer, however in a3 the
agents only rotates and therefore the solution is found in 2nd
layer.

Comparison of the multiagent planners
In the final experiment, the DPGM algorithm was com-
pared to other two cited algorithms. Table 2 shows the re-
sults. As the srf setting of Minion showed the best results—

1http://www.emn.fr/z-info/choco-solver/
2http://minion.sourceforge.net/

domain-agents DPGM DisCSP+Pl. MA-A*
rover-a2 3.8s/69kB 1.4s/0.8kB 22.4s/52kB
rover-a3 20.3s/234kB 7.9s/1.7kB 230s/2.5MB
rover-a4 – 62.3s/3.1kB –
log-a4 0.3s/34kB 0.6/15kB 0.8s/77kB
log-a6 0.6s/136kB 38.5/7.1MB 2.0s/320kB
log-lin-a6 0.5s/167kB – 1.7s/87kB
log-lin-a8 0.7s/417kB – 4.7s/254kB
log-lin-a10 0.9s/849kB – 15.4s/589kB
log-lin-a15 1.6s/2.9MB – 217s/4.2MB
deconf-a2 1.3s/18kB N/A 0.9s/15.3kB
deconf-a3 0.2s/13kB N/A 1.2s/187kB
deconf-a4 – N/A 3.8s/2.1MB
satellite-a6 1.5s/266kB 4.4/6.5kB 7.4s/270kB
satellite-a8 4.3s/793kB – 37.5s/964kB
satellite-a10 12.7s/1.8MB – 189s/2.5MB

Table 2: Results for DPGM, DisCSP+Planning and MA-A* with
set-additive heuristic. The dash – means the time or memory limit
was exceeded. N/A means the planner did not return a sound plan.

especially because of its ability to solve most of the pre-
sented problems—we chose it for comparison with the other
algorithms.

The results show the DPGM to be efficient in de-
coupled domains which are rather combinatorially easy
(LOGISTICS, LINEAR LOGISTICS and SATELLITES). The
DisCSP+Planning is efficient in problems which are com-
binatorially hard from perspective of individual planning
(ROVERS), as the internally used planner is highly efficient
FastForward. The used implementation of MA-A* with set-
additive heuristics was most effective in highly coupled do-
mains (DECONFLICTION).

Final remarks
DPGM showed its strength based on efficient factorization
of the problems. However problems as DECONFLICTION,
which are coupled and require high combinatorial search,
DPGM solves rather inefficiently if at all. An issue that hin-
dered the algorithm was the order how CSP generated the
plans. For instance, the first plan that the agent ag1 gener-
ated in the 4th layer of the deconf-a4 problem, consisted
of its own actions, leading him to the goal. Additionally,
agent generated requirements for the agent ag2 to prevent
future collisions. However, the requirements were unreason-
able: instead of requiring one action that would suffice for
agent ag1 to avoid the collision with agent ag2, he built a
whole plan for the agent ag2. And since ag1 did not know
the ag2’s goal, the plan was usually invalid. We tried to avoid
this, by stating to minimize requirements put on other agents
in the CSP solver. This approach helped to lower the num-
ber of the constraints; however, the solution of such CSP be-
came combinatorially more complex and therefore did not
bring much of improvement in the efficiency. Deeper study
of these phenomenons remains for future work.
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