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ABSTRACT

Deterministic domain-independent planning techniques for multiagent systems stem from the
principles of classical planning. Three most recently studied approaches comprise (i) DisCSP+Planning
utilizing distributed Constraint Satisfaction Problem solving for coordination of the agents and in-
dividual planning using local search, (ii) multiagent adaptation of A* with local heuristics and (iii)
distribution of GraphPlan approach based on merging of planning graphs.

In this work, I summarize the principles of these three approaches and describe a novel imple-
mentation and optimizations of the Distributed Planning through Plan Merging (DPGM) multia-
gent GraphPlan approach. Domain and problem description were adapted for their utilization in
multiagent planners. I experimentally validate influence of the parametrization of inner extraction
phase of individual plans and compare the best results with the former two multiagent planning
techniques.

Keywords: multi-agent systems, Automated planning, Distributed algorithms

ABSTRAKT

Distribuované doménově nezávislé plánovací techniky pro multiagentní systémy jsou založené
na principech klasického plánování. V současné době byly představeny tři různé přístupy: (i)
DisCSP+Planning využívající distribuovaného CSP pro řešení koordinace agentů a individuálního
plánování pomocí místního prohledávání, (ii) upravený A* pro multiagentní problémy využívající
lokálních heuristik a (iii) distribuovaného GraphPlanu založeného na slučování plánovacích grafů.

V této práci popisuji a shrnuji tři výše zmíněné přístupy, nové implementace a dále několik op-
timalizací algoritmu multiagentního distribuovaného plánování pomocí slučování plánu (DPGM).
Popisy domén a plánovacích problémů byly uzpůsobené pro využití v multiagentních plánovačích.
Experimentálně byly ověřeny vlivy parametrizace vnitřní extrakční fáze individuálních plánů. Ne-
jlepší výsledky byly srovnány se dvěma výše zmíněnými multiagentními plánovacími technikami.

Klíčová Slova: multi-agentní systémy, automatizované plánování, distribuované algoritmy
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Chapter 1

Introduction

Over the last three decades planning became an important field of the research in the artificial intel-

ligence. It is used in shipping and logistics, scheduling trains and buses, games, etc. Its importance

has even more intensified with the advent of autonomous robots, intelligent agents and unmanned

vehicles. Currently, the most popular Mars rover, Opportunity [15] and Curiosity [4] created by

NASA, could serve as a great example of the autonomous robots, that could not function as well

as they do, without their planning abilities.

Planning is generally a search for a sequence of actions that leads from an initial state to a goal

state. Planners are divided into the three main categories: Domain-specific, Domain-independent

and, Configurable. Domain-specific planners are the most successful and powerful because they

are tailored for a specific problem, for which they give excellent results; however, for any other

domain, they will not work well, if at all. Domain-independent planners in theory should work in

any planning domain; however, it is not feasible to develop a planner that works in every possible

domain. Therefore certain assumptions are made to restrict the set of domains. In the classical

planning problem, which is primarily dealt with in this work, the assumptions about the environ-

ment are [5, 16]:

finite - it contains finite number of states, actions and events
1
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fully observable - planner knows all the relevant information to make correct choice of the action

deterministic - each action has exactly one predictable outcome

static - environment cannot change during the deliberation

implicit time - actions have no time durations - they are instantaneous

sequential plans - next state depends on the previous actions.

Finally, the configurable planner is somewhere between the domain-specific and domain-independent

planners. It consists of a domain-independent search engine that uses domain-specific search-

control knowledge, given to the planner as an input together with the problem. It can be used for

different domains by altering the domain descriptions, however the planning engine is intact [10].

Planning can also be either single-agent, where one agent performs all actions; or multiagent,

where multiple agents act cooperatively. The multiagent planning (MAP) resembles more the

reality of the complex problems. For instance, to build a house, each performer can represent an

agent: concrete mixer, brick layer, digger, etc. Some problems even require multiple agents, since

one agent cannot perform a task alone. Moreover, team of the agents might achieve goal faster

and more efficiently and their solutions are usually more robust. Disadvantages of this approach is

that agents’ coordination is very hard to solve, since there is no global view. Criteria for the MAP

are usually: (i) computation complexity, (ii) communication complexity among the agents, (iii)

flexibility, how much freedom agents give each other, (iv) robustness, as a resistance of the plan to

changes in the environment, (v) plan quality, and (vi) scalability for changes in size of the problem

or number of agents.

Multiagent planning can be either centralized multiagent planning (CMAP) and distributive

multiagent planning (DMAP), both of which bring certain advantages and disadvantages. A cen-

tralized approach is often faster then DMAP, gives better results and requires lower communication

(only to gathers the problem information and send the results back to the agents). After the cen-

tralized computation, the resulting plan has to be decomposed for agents, so that they can execute
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the plan distributively. DMAP, which in many aspects overlaps with the parallel algorithms, on

the other hand, uses agents’ cooperation, instead of centralized computation. This approach gives

agents opportunity to behave in self-interest and computation runs in parallel.

1.1 Planning Formally

In this work I use definition for the planning domain, problem and solution as it is defined for

STRIPS in [5, 7, 14]. Planning domain is a restricted state-transition system Σ = (S,A,app) over

the finite set of proposition symbols P = {p1, ..., pn}, where:

• proposition p ∈ P is a statement, which can be either true or false, i.e., (block is in location

A), (car has fuel), etc.;

• state s ∈ S is a subset of P and notifies which propositions from P currently hold. If propo-

sition p ∈ s, then proposition p holds in state s, otherwise p does not hold1;

• action a ∈ A is a triple a = 〈pre(a),add(a),del(a)〉. Set pre(a) ⊆ P is called preconditions

of action a and sets add(a),del(a) ⊆ P are called positive and negative effects of action a,

respectively; it is required that add(a)∩del(a) = /0;

• app is an application function, defined as following:

app(a,s) =

 (s∪ add(a))\del(a) if pre(a)⊆ s

not defined otherwise

where a ∈ A and s ∈ S. I also define an application function app for a set of actions Ai ⊆ A

over state s, denoted as s2 = app(s,Ai), if actions in Ai are independent from each other;

otherwise set of actions Ai are not applicable on state s. Actions a and b are independent if

1 p /∈ s can be also interpreted as ¬p ∈ s
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(pre(a)∪ add(a))∩ del(b) = /0 and (pre(b)∪ add(b))∩ del(a) = /0, and they can be applied

simultaneously or in arbitrary order on state s. Resulting state s2 is achieved by application

all the actions in Ai on s, i.e., s2 = (s∪
⋃

a∈Ai

add(a))\ (
⋃

a∈Ai

del(a)).

A planning problem is defined as a triple P = (Σ,s0,G), where:

• s0 ⊆ P is set of initial propositions (or s0 ∈ S is initial state)2

• G ⊆ P is called goal propositions. Every s ∈ S that satisfies G, in other words G ⊆ s, is a

goal state. Set of goal states is SG ⊆ S.

Finally, a plan to the planning problem P = (Σ,s0,G) can be either:

• totally ordered sequence of actions π = 〈a0, ...,aN〉, where ai ∈ A, i = 1, . . . ,N; and it is

applicable to a state si defining a sequence 〈s0, ...,sN〉 such that si+1 = app(si,ai) and sN ∈ SG;

N is the number of the actions of the plan and the length of the plan; or,

• partially ordered sequence of actions π = 〈A0, ...,AK〉, where Ai ⊆ A, i = 1, . . . ,N; and it

is applicable to a state si defining a sequence 〈s0, ...,sN〉 such that si+1 = app(si,Ai) and

sN ∈ SG
3; K is the length of the plan and

K
∑

i=0
|Ai| is number of actions.

1.1.1 Block-World Problem Example

In the Block-world planning problem the goal is to find a plan of how to rearrange blocks from

the initial configuration to the goal configuration. Blocks can be put on the table or on top of each

other. A block can be moved only if it is the top block; additionally, only one block can be moved

at a time. Figure 1.1 illustrates all possible states of this problem. Action MFT stands for Move-

From-Table, MTT stands for Move-To-Table, and M stands for Move. Set of propositions P, set of
2in this work, the state s ∈ S is represented by a set of propositions from P. So terms state and set of propositions

are interchangeable and have the same meaning.
3partially ordered plan can be easily flattened to a totally ordered plan by setting arbitrary orders to sets Ai in

respective way.
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Figure 1.1 State-space of a simple block-world planning problem. Action M means move,
MFT means moveFromTable and, MTT means moveToTable.

states S, set of action A, the initial state s0 and the goal state g, respectively, are following:

P = {(onTable A), (on A B), (on A C), (onTable B), (on B C), (on B A), (onTable C), (on C A),
(on C B), (empty A), (empty B), (empty C)}, where:
(onTable A) means that block A is on the table;
(on A B) means that block A is laid on block B; and,
(empty A) means that there is no block laid on block A.

S = P(P) is a powerset of P; its cardinality is |S|= 2|P| = 4096.4

4the number 4096 represents all the possible combination; however, only 13 states are consistent and reachable
from the initial state using actions from A, so the search state space is much smaller.
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A = {(moveToTable A B), (moveToTable A C), (moveToTable B A), (moveToTable B C), (move-
ToTable C A), (moveToTable C B), (moveFromTable A B), (moveFromTable A C), (move-
FromTable B A), (moveFromTable B C), (moveFromTable C A), (moveFromTable C B),
(move A B C), (move A C B), (move B A C), (move B C A), (move C A B), (move C B A)},
where:
(moveToTable A B) = ({(empty A), (on A B)},{(onTable A),(empty B)},{(on A B)})
means to move block A from block B to the Table;
(moveFromTable A B) = ({(onTable A), (empty B)},{(on A B)},{(empty B),(onTable A)})
means to move block A from a Table onto block B;
(move A B C) = ({(on A B),(empty A),(empty C)},{(on A C),(empty B)},{(empty C)})
means to move block A from block B onto block C; and, similarly the rest.

s0 = {(on A B), (on B C), (onTable C), (empty A)}.

G = {on A C), (on C B)}. Note, that it is not necessary to describe the whole goal state – leaving
out the propositions (empty A) and (onTable B) – but only the propositions that are wished
to hold at the goal state.

An optimal plan with the minimal number of actions is π = 〈(moveToTable A B), (moveToTable B C),

(moveFromTable C B), (moveFromTable A C)〉. However, there are more non-optimal plans that

solves this problem, in fact, infinitely many.

1.2 Multiagent Planning

Planning for MAP is a search for a plan for each agent, assuming that agents have to cooperate

in order to reach the global goal. Problem for set of agents A = {agα}K
α=1 is given by quadruple

P = 〈P,{Aα}K
α=1,s0,G〉, where:

• P is set of all propositions and Pα ⊆ P is a set of propositions that are related to agent agα ,

meaning, that for every p∈Pα exists action a∈Aα , such that p∈ {pre(a)∪add(a)∪del(a)};
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• Aα is a set of actions that agent agα can perform. Every action a ∈ Aα is defined as a =

〈pre(a),add(a),del(a)〉, where pre(a),add(a),del(a)⊆ Pα and add(a)∩del(a) 6= /0;

• s0 ⊆ P is a set of initial propositions; and,

• G ⊆ P is a set of goal propositions.

Agents’ actions are divided into two groups: public actions and private actions. Public actions

are those that can be influenced by other agents in some way. Formally, action a ∈ Aα is agent’s

agα public action if there is an action b ∈ Aβ of an agent agβ , α 6= β , such that (pre(a)∪add(a)∪

del(a))∩ (pre(b)∪add(b)∪del(b)) 6= /0; otherwise, action considered to be private action of agent

agα .

1.3 DisCSP+Planning-based planner

The DisCSP+Planning-based planner, introduced in [13], can be described as two interleaving

components, a coordination component and a individual planning component; both of which re-

quire separation actions into private and public actions of each agent. The coordination component

deals only with the public actions. It searches for a sequence of interaction points between the

agents’ plans. For a given length of the public part of the plan δ , it tries to assign different public

actions of each agent in the different time-steps so that the global goal is satisfied. This is the inter-

action part, so the resulting plan of each agent has to satisfy the requirements put by the rest of the

agents and vice versa. These requirements are described in form of coordination constraints in the

inner DisCSP problem. Solving this problem effectively means solving the multiagent planning

problem. If some agent or the team as a whole coud not solve the DisCSP, then δ , the lenth of the

coordination public part of the plan is increased by one and the whole process is repeated.

The individual planning component forms the other type of constraints for the DisCSP process,

encoding the required local parts of the plan. The individual planning constraints limits usage of
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the public actions in the coordination part of the plan such that the gaps between them can be filled

by sequences of individual actions of the individual agents.

Nissim et al. experimentally compared DisCSP+Planning-based planner with the centralized

Fast-Forward (FF) [6] solver over three types of problem domains: LOGISTICS, ROVERS and

SATELLITES. Problems varied in required number of agents, from 2 agents up to 18 agents. Cen-

tralized FF algorithm showed to be much better in LOGISTICS problems; on the other hand, prob-

lems ROVERS and SATELLITES were solved about 10x faster by DisCSP+Planning-based planner

than (FF).

1.4 Multi-Agent A*

The algorithm proposed in [12] is inspired by the well-known A* algorithm. Similarly to central-

ized A*, the multiagent distributed A* (MAD-A*) maintains open lists for all agents, that keeps

track of the so far unvisited states, and closed lists, that keep the track of the already visited states.

Each agent also uses a local heuristic to decide which state from the open list it should expand as

next. As stated in the paper, each agent can use different heuristics.

In the MAD-A*, similarly to the DiscCSP+Planning, it is firstly necessary to separate every

agents’ public and individual actions. The algorithm runs simultaneously for each agent. During

the search, the agents send messages to each other to distribute the search at points, where other

agents can follow. Effectively, it means the messages are sent only for states achieved by public

actions. Each such message consists of a state s, its cost value gagα
(s) and a heuristic estimate

hagα
(s). In decoupled problems, this principle allows distribution of the knowledge about the

entire search space among the agents. When an agent receives a message with a state s, it decides

either to: visit the state (by adding it to its open list), update its knowledge about s, or discard it

if it knows a better path to the state. The search terminates if an agent expands a state which is
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compatible with the goals set G and the resulting plan is ensured to be globally optimal.

In [12] MA-A* was tested in its parallel (MAP-A*) and distributed (MAD-A*) setting and

compared with parallel and distributed centralized A* over LOGISTICS, ROVERS, SATELLITES

and ZENOTRAVEL problems, varying in problems difficulty and number of agents. Authors also

compared different heuristics, namely, LM-cut and Merge&Shrink for both, MAP-A* and MAD-

A*. Results showed that MAP-A* using LM-cut heuristic outperformed centralized A* in almost

all instances of the problems. It showed to be faster in range from 1 up to 19.5 on instances

that both algorithms solved. Heuristic Merge&Shrink was less improving, but yet was better then

centralized A*. In the distributed setting centralized A* showed to be faster when LM-cut heuristic

was used; but when the Merge&Shrink heuristic was used, MAD-A* was usually faster and solved

problems that centralized A* could not solve at all.

Nowadays, on-line centralized FF planer5 showed to solve these problems instantaneously (in

0.1 seconds). The reason that DisCSP+Planning-based planner and multiagent A* showed to be

often better than centralized FF planner is probably due to the fact that authors used an old FF

implementation planner.

5http://fai.cs.uni-saarland.de/hoffmann/ff.html
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Chapter 2

Distributed Graphplan

One of the most efficient centralized planners is the Graphplan algorithm. Thus, I would like to

begin this chapter by introducing this algorithm and its improvement using CSP solver as a part of

its plan extraction. Graphplan is an essential part for both, Distributed Graphplan and Distributed

Planning through Graph Merging (DPGM) algorithms, that were mainly studied and implemented

in this work.

2.1 Graphplan

Graphplan, developed by Avrim Blum and Merrick Furst in 1995 [2], builds a planning graph (also

called plangraph) structure and analyzes it before generating the plan, rather than blindly searching

for a valid solution. The planning graph is not a state-search graph, but rather flow network, which

encodes in its structure the initial conditions, goals and notion of the time steps. Graphplan’s input

is a planning problem P = 〈P, I,G,A〉, where: P is set of propositions, I ⊆ P is set of initial

propositions, G⊆ P is set of goal propositions, and A is set of actions, where each action is defined

as a= 〈pre(a),add(a),del(a)〉 and pre(a),add(a),del(a)⊆P. Output of the graphplan is a partially

ordered plan π = 〈A0,A1, . . . ,AN〉, where Ai⊆A for i= 1, . . . ,N. Graphplan consists of two phases,

11
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planning graph construction and solution extraction.

First phase, the planning graph construction (also called plangraph construction), builds the

plangraph, which contains alternating proposition levels, denoted as S0,S1, . . . and action levels,

denoted as O0,O1, . . . . Proposition level is a set of propositions that can be reached in that level.

First proposition level S0 equals to the set of initial propositions, the others are generated. Action

level is a set of actions, that could be applicable in that level, under certain conditions. Action

level Oi contains all the actions, whose preconditions are met in previous proposition level Si.

Proposition level Si+1 is generated as union of Si and effects of actions in Oi. Thus, Oi = {a ∈

A|pre(a)⊆ Si} and Si+1 = Si∪
⋃

a∈Oi

add(a)∪del(a). Additionally, dummy action called noop action

(also called maintenance action) is introduced for every proposition p as noopp = 〈{p},{p},{}〉.

This actions transfers the propositions from previous propositions level to the next one, reasoning,

that if no action changed the truth of the proposition, it remains true.

There are two types of edges in the planning graph: (i) precondition edges, that connect propo-

sitions from Oi with actions in Ai denoting which propositions are the action’s preconditions and

(ii) effect edges, connecting action from Ai with propositions in Oi+1, denoting action’s add-effects

and del-effects.

Graphplan’s major effectivity is in maintaining the set of mutexes (stands for mutually exclu-

sive)—induced knowledge between two propositions or two actions in every level. Mutex in action

level is a couple (a,b), where a,b ∈ Oi, denoting that action a and b cannot be performed together

in this level. Set of action mutexes in level i is denoted as µOi . Similarly, mutex in proposition

level is a couple (p,q), where p,q ∈ Si, denoting that both propositions cannot be true in this level.

Set of proposition mutexes in level i is denoted as µAi . There are several types of mutexes:

• Actions a and b in action level Oi are in:

– interference mutex, if either of them deletes either precondition or an add-effect of the

other. Thus, if pre(a)∪ (add(b)∩del(b)) 6= /0 or pre(b)∪ (add(a)∩del(a)) 6= /0; or,
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– competing needs mutex, if they have any preconditions in proposition level Si−1, which

are in mutex.

• Propositions p and q from the proposition level Si (noop actions are also considered) are in

mutex if:

– p is negation of q; or,

– all actions in Ai−1, leading to p (that have p in their add-effect) are mutexes with all the

actions, leading to q. Formally, p and q are in mutex, if every action in {a ∈ Ai−1|p ∈

add(a)} is in mutex with every action in {b ∈ Ai−1|q ∈ add(b)}.

The plangraph pg = 〈S0,µS0,O0,µO0, . . . ,ON−1,µON−1,SN〉 consists of sequences of level and

its mutex pairs, either until it reaches the proposition level SN that contains the goal propositions,

such that no two of them are in mutex; or no change in propositions levels was detected, e.g.,

SN = SN−1 and µSN = µSN−1 , which is called fixed point. In the former case, it continues with the

plan extraction phase; in the latter case, no solution exists, and algorithm terminates.

In the solution extraction phase the backsearch algorithm is run to find a plan. For every propo-

sition level, starting from SN and ending at S0, backsearch algorithm sets new subgoal. Subgoal is a

set of propositions that consequently have to be supported by actions in the immediately preceding

action level. Subgoal Ssubgoal
i+1 ⊆ Si+1 in level i+1 is supported by set of actions Osupp

i ⊆ Oi from

the previous level i, if for every p ∈ Ssubgoal
i+1 : exists action a ∈Osupp

i so that p ∈ add(a) and no two

actions in Osupp
i are in mutex. New subgoal Ssubgoal

i is computed as Ssubgoal
i = {pre(a)|a ∈Osupp

i }.

If no set of supporting actions can be generated in level Oi, algorithm backtracks to the level Oi+1,

and there tries to find a different set of supporting actions. Algorithm continues in this manner ei-

ther until it runs out of all possibilities of supporting sets in all levels, which means that no solution

exists; or proposition level S0 is reached and partially ordered plan π = 〈Osupp
0 ,Osupp

1 , . . . ,Osupp
N 〉

is returned.



14 Chapter 2 Distributed Graphplan

In Algorithm 3 is presented the pseudo-code of the Graphplan algorithm. As an input it receives

the planning problem P = 〈P, I,G,A〉, where P is a set of propositions, I ⊆ P is a set of initial

propositions, G ⊆ P is a set of goal propositions and A is set of actions. First, the Graphplan

algorithm initializes first proposition level. Then it continues to build a new action level, action

mutex level, proposition level and proposition mutex level until the fixed point is reached. After

each newly built level, if goal propositions were such that no two goal propositions are in mutex,

plan extraction phase is run through backsearch algorithm. Backsearch pseudo-code is illustrated

in Algorithm 2. As an input it gets a set of propositions Ssubgoal as a subgoal and the plangraph

with N levels. If plangraph has zero levels, empty plan is returned. Otherwise, it attempts to find

set of support actions Osupp
N−1 in the last action level ON−1, such that no two actions in Osupp

N−1 are in

mutex. Next, compute new subgoal propositions Ssubgoal
new that is a set of preconditions of actions

in Osupp
N−1. Recursively call this procedure with new subgoal Ssubgoal

new and the plangraph without the

last level.

Figure 2.1 depicts the partial planning graph of the block-world problem, presented in Exam-

ple 1.1.1. Lines from the propositions in Si to the actions in Oi represent the actions’ preconditions;

solid lines from the actions in Oi to the preconditions in Si+1 represent the add-effects, and dotted

lines represent the delete-effects. Big dots on solid lines in the action level denote the noop actions

of the connected proposition. Finally, the green curves that link two actions or two propositions

together denote those actions or propositions that are in mutex. Solution of the problem from 1.1.1

is actually in 4th level, which requires big plangraph. Assume a different goal state: to put all the

blocks on the table next to each other. This solution can be found in the depicted plangraph, as

it requires only two actions. After building this plangraph, backsearch algorithm attempts to find

this plan. The search begins with the goal propositions in last proposition level S2 (propositions

in S2 in red color). Next, it finds the supporting actions that have as an effect the these proposi-

tions. The support actions are the action level in red color in action level O1 (two noop actions



2.1 Graphplan 15

Algorithm 1: Graphplan
input : P = 〈P, I,G,A〉 ; // planning problem
output: π = 〈A0,A1, . . . ,AN〉 ; // resulting plan

S0← I;
µS0 ← generate mutexes in proposition level S0;
N← 0;
repeat

ON ← build new action level ON ;
µON ← generate mutexes in action level ON ;
N← N +1;
SN ← generate new proposition level;
µSN ← generate mutexes in proposition level SN ;
if G⊆ SN and no two propositions in G are in mutex then

π ← Backsearch(G,〈S0,µS0 ,O0,µO0 ,S1,µS1 ,O1,µO1 ,. . . ,SN−1〉);
if plan π found then

return π;
end

end
until fixed point is not reached;
No solution exists

Algorithm 2: Backsearch
input : Ssubgoal,〈S0,µS0,O0,µO0, . . . ,SN〉
output: π = 〈A0,A1, . . . ,AN〉 ; // resulting plan

if N equals 0 then
return /0;

end
while has not ran out of the support action sets to support the Ssubgoal do

Osupp
N−1← get set of the support actions to support Ssubgoal , so that no two actions are

in mutex;
Ssubgoal

new ← compute new subgoal as {pre(a)|a ∈ Osupp
N−1};

π ← Backsearch(Ssubgoal
new ,〈S0,µS0 ,O0,µO0 ,. . . ,SN−1〉);

if returned plan is not f ailed then
return 〈π,Osupp

N−1〉;
end

end
return f ailed;
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and the (MTT B C) actions). A set of preconditions of these three actions will be new subgoal (the

propositions in red color in S1). After one more repetition algorithm terminates, as it reaches first

proposition level S0. Thus, the plan is π = 〈{(MTT A B)},{(MTT B C)}〉 (the noop actions can

be excluded from support actions in the plan as they neither add nor delete any proposition).

Figure 2.1 Graphplan of a simple block-world planning problem.

It is worth mentioning a few important properties of a plangraph. Proposition levels mono-

tonically increase, i.e., Si ⊆ Si+1; and so does the action levels, i.e., Oi ⊆ Oi+1. But proposition

mutex relationships monotonically decrease, meaning, that if propositions p and q are not in mutex

in level Si, they will never become mutexes in any future proposition level. Similarly, the action

mutex relationships decrease. These properties and the fact that P and A are finite sets guarantee

that there exists the fixed point for every plangraph.
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2.1.1 Plan extraction using dynamic CSP

Kambhampati and Subbarao presented in [8] a method for converting the plan extraction problem

into the dynamic CSP problem. This method can replace the backsearch algorithm in the Graph-

plan. The conversion is following: every proposition from the plangraph will represent a variable

and every action will represent a value. Variable’s domain are the values of the support actions of

the proposition represented by that variable. There are two types of constraints in this CSP, mutex

constraints and activation constraints. The mutex constraints forbid assigning to two variables the

values of the actions, that are in mutex in the original plangraph. Activation constraints represent

the computation of new subgoals from the support actions in the backsearch. In dynamic CSP if

variable is deactivated, no assignment is required for valid solution; if variable is activated, one of

the values from the domain has to be assigned to it. At the beginning all variables are deactivated

except the variables that represent the goal propositions. The activation constraint states that if

value is assigned to the activated variable, then all variables—that represent the preconditions of

the action which value is assigned—are also activated. Actions that are represented by the values of

the activated variables in the CSP solution, will be in the solution plan. From the knowledge which

variables represented which proposition can be induced in which level each action is performed.

According to [3] this method does not improve the plan extraction phase too much, but it is

required by algorithms Distributed Graphplan and DPGM, since they add a few more constraints

into the CSP assignment. In my work I compared both methods for plan extraction, the backsearch

and using CSP conversion, and CSP conversion was noticeably faster and required significantly

less memory. This was not the subject of this particular work; hence no statistical measurements

were made.
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2.2 Distributed Graphplan

Distributed Graphplan (DGP) algorithm was introduced by Iwen et al. in [7]. This algorithms

solves the problem by decomposing it into two subproblems. Each subproblem is solved separately

by the Graphplan algorithm. Consequently, algorithm attempts to find plans that are not conflicting.

Note, that DGP is not multiagent planner, since it does not work with the agents, that could have

limited actions, but searches two plans in which both can perform all the actions.

DGP algorithm expects on its input manually decomposed two subproblems P1 = 〈I,G1,A1〉

and P2 = 〈I,G2,A2〉, where G1 ∪G2 = G and A1 ∪A2 = A; and P = 〈I,G,A〉 is the original

problem, I,G,G1,G2 ⊆ P and A1,A2 ⊆ A. First, it constructs two plangraphs, PG1 that solves

subproblem P1 and PG1 that solve subproblems P2, from which plans π1 and π2 are extracted,

respectively. If length of the plans differ, the shorter one is extended with noops actions until

their length are equal. Next, it constructs global plan π , as union of π1 and π2 in their respective

levels, and checks its validity by progression. If it is valid, algorithm terminates; otherwise conflict

resolution step is followed. The conflict between the plans can be caused only due to static mutex1,

which have to be resolved. One of the two conflict actions are replaced by a new action from the

planning graph where the conflict action came from. The action is chosen so that the plan still

solves the individual goal. This process is repeated until it finds non-conflict plans; or, runs out of

new actions, after which new level is generated in both plangraphs and whole process repeats.

DPG algorithms was implemented and tested in this work. However, this algorithm is not

suited for multiagent planning problems, so no statistical result were carried out. Yet some parts

of it were reused for DPGM implementation.

1static mutex is found by examining the preconditions and effects of actions in one level; whereas dynamic mutex
is propagated static mutex through more levels.



Chapter 3

Distributed Planning through Graph

Merging (DPGM)

DPGM algorithm, presented by Damien Pellier in 2010 [14], was the main subject of this work.

Primarily this algorithms was studied into the details, consequently implemented and even im-

proved. Aim of this work was to compare it to DisCPS+Planning-based planner and MA-A* over

standard multiagent planning problems.

3.1 Definitions

Planning problem is defined as P = 〈P,A , I,G〉, where:

• P is set of propositions and Pα ⊆ P is set of propositions concerning the agent agα ;

• A = {agα}K
i=1 is set of agents, where agα can perform action Aα ;

• I ⊆ P is set of propositions that hold in the initial state; and,

• G⊆ P is set of propositions, that must hold in a goals state.

The set of propositions Gα ⊆ G is agent’s agα individual goal, and for every goal proposition

p ∈ Gα must exist supporting action a ∈ Aα , so that p ∈ add(a); additionally, G1∪·· ·∪GK = G.
19
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The plan πα = 〈Aα
0 ,A

α
1 , . . . ,A

α
N〉 is agent’s agα ∈A individual solution plan in form of partially

ordered set if every Aα
i ∈ πα is applicable on state sα

i defining sequence of states 〈sα
0 , . . . ,s

α
N〉 such

that Gα ⊆ sα
N .

The plan Π = 〈A0,A1, . . . ,AN〉 is a global solution in form of partially ordered set solving the

problem P = 〈P,A , I,G〉 if:

• individual plan πα = 〈Aα
0 ,A

α
1 , . . . ,A

α
N〉 of every agent agα reaches its individual goal Gα ;

and

• every Ai =
⋃K

α=1 Aα
i .

3.2 Algorithm

The planner as a whole can be described by following five phases: global goal decomposition,

expansion, planning graph merging, individual plan extraction, coordination. The result is in

form of a coordinated individual solution plan.

3.2.1 Global Goal Decomposition

In the first phase, the global goal decomposition, each agent agα creates an individual goal Gα ⊆G,

i.e., a subset of the propositions from the global goal that it can reach. Proposition p ∈ G is in

the individual goal Gα of an agent agα if exists an action a ∈ Aα such that p ∈ add(a). If any

proposition from the global goal cannot be assigned to any agent, then problem P has no solution.

Algorithm 3 illustrates the procedure. For every proposition p in the goal it tests searches which

agents have an action, that would have p in add-effect. Those agents will have p in their individual

goals.
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Algorithm 3: Goal Decomposition
input : A ; // set of all agents
G; // set of goal propositions
output: 〈G0,G1, . . . ,GN〉
foreach p ∈ G do

foreach agent agα ∈A do
if exists a ∈ Aα , so that p ∈ add(a) then

Gα ← Gα ∪ p;
end

end
end

3.2.2 Expanstion and Planning Graph Merging

In next two phases, the expansion and planning graph merging, every agent builds an individual

planning graph via Graphplan algorithm. First, every agent builds a new level in their planning

graphs. Afterwards, actions from the new level are shared with the rest of the agents. Other agents

include into their respective plangraphs the relevant actions from actions, that are shared with

them. Agent’s agα action aα ∈ Aα is relevant to agent agβ in two cases:

• if add(aα) contains a proposition that another action aβ ∈ Aβ uses in pre(aβ ) or add(aβ ),

then the action aα promotes the action aβ ; or,

• if del(aagα
) contains a proposition that another action aβ ∈ Aβ uses in pre(aβ ) or add(aβ ),

then the action aα threats the action aβ .

The threats and promotions are relevant to the agent, because they may help him to achieve its

individual goal. This is the coordination point of agents if agent uses the threat or promotion

action in its individual plan. The algorithm alternates between the expansion phase, where all the

agents build new levels in their planning graphs and the planning graph merging phase, when all

the agents share their actions. This is done until all agents reach their individual goals in their

planning graphs or all planning graphs reach their fixed points. Note, that all plangraphs will
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always have equal number of levels. Although some agent’s plangraphs may have reached goal

propositions earlier, they will keep expanding their plangraphs until all plangraphs reach individual

goals. Algorithm 4 illustrates the pseudo-code of the both phases. In the first for-cycle the each

agent’s planning graph is extended by one level and in the second for-cycle agents share their

actions from the last level among each other. The relevant actions—threats and promotions—are

included into the agent’s planning graphs.

Algorithm 4: Expansion and Merging Planning Graphs
input : A ; // set of all agents
〈G1,G2, . . . ,GN〉; // set of individual goals for each agent
output: 〈pg1, . . . , pgN〉 ; // pgα = 〈pg1

α , , . . . , pgL
α〉 is agent agα’s plangrap,

and pgi
α is ith level of pgα

L← 1;
while until all plangraphs pgL

α contain Gα in non-mutex way do
for every agent agα ∈A do

build level pgL
α ;

end
for α1← 1, . . . ,K do

for α2← α1 +1, . . . ,K do
agent agα2 selects relevant actions from pgL

α1
and introduces them into its

plangraph pgL
α2

;
agent agα1 selects relevant actions from pgL

α2
and introduces them into its

plangraph pgL
α1

;
end

end
L← L+1;

end

3.2.3 Individual Plan Extraction

In the individual plan extraction phase, each agent extracts plan(s) from its plangraph. In the cen-

tralized Graphplan algorithm, this is done by compilation of the problem into a CSP and solved by

a CSP solver. Each result from the solver is then one resulting plan as Kambhampati showed in [8].
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3.2.4 Coordination

In the last coordination phase, before an agent agα generates an individual plan, it includes re-

quirement constraints and commitment constraints—induced by the other agents’ plans—into its

individual plan extraction CSP problem.

The requirement constraints are couples (a, i) which describe that action a has to be performed

in a level i. The function req(π1,...,α) denotes a set of requirement constraints induced by the

current partial plan π1,...,α of the agent agα . A partial plan π1,...,α in this phase contains finished

parts from agents ag1, . . . ,agα and future actions required by the agent agα (and possibly from

previous agents) for the following agents agα+1, . . . ,agK .

The commitment constraints are again couples (a, i) denoting that no action b, which is in mutex

with action a, can be performed in level i. Function com(π1,...,α) denotes a set of the commitment

constraints induced by the current partial plan π1,...,α .

A couple c = (com(π1,...,α),req(π1,...,α)), besides representing the partial plan π1,...,α in form

of action commitments and requirements, describes which agents have already contributed to the

plan π1,...,α with their individual plans—the performers of the actions in com(π1,...,α)—and which

agents have not—the performers of the actions in req(π1,...,α) but not in com(π1,...,α). Such com-

mon partial plan in the form of requirement couple c is passed from one agent to another. Each

agent extends it with its individual plan and possibly new requirements for following agents. After

c passes all the agents, it contains a global plan consisting of individual plans of all the agents.

3.2.5 Example

Assume the agents are ordered ag1,ag2, . . . ,agK , as illustrated in Figure 3.1, and that they have

already generated their plangraphs, so phases individual plan extraction and coordination are to be

approached. It starts with an agent ag1 which generates its first plan π1—lower index indicates

the owner of the individual plan, here it is the agent ag1. The agent computes commitment and
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requirement constraints, denoted as c1 = (com(π1),req(π1)) and sends them to agent ag2. Agent

ag2 includes constraints c1 into its CSP problem, as additional constraints and generates plan

π2, which is compatible with plan π1. Next, ag2 computes new constraints c1,2 = (com(π1)∪

com(π2),(req(π1)∪ req(π2)) = (com(π1,2),req(π1,2)), and passes them to agent ag3. Generally,

when agent agα receives constraints c1,...,α−1 = (com(π1,...,α−1),req(π1,...,α−1)), it includes it into

its CSP problem and generates its individual plan πα . Then agent agα computes new constraints

c1,...,α = (com(π1,...,α−1)∪ com(πα),req(π1,...,α−1)∪ req(πα)) = (com(π1,...,α),req(π1,...,α)), and

passes them to agent agα+1, and so on. In Figure 3.1, the search would actually end with generating

agK’s plan πagK , which illustrates the ideal way of the solution, since no agent had to generate a

variance of its plan more than once to fulfill all the requirements from previous agents. If agent

ag3 could not generate plan π3, algorithm would backtrack to agent ag2, who would generate an

alternative plan π ′2, as shown in the figure. If all agents ran out of plans, algorithm returns to the

phases expansion and planning graph merging, and whole search repeats again.

Figure 3.1 DPGM plan search process.
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3.3 Optimizations

In [14], the author introduces theoretically the algorithm, yet no experiments were carried out to

verify its efficiency. Besides the implementation of the algorithm in Java programming language,

some implementation improvements to speed up the algorithm are included.

3.3.1 Constraint cache

To reduce the search tree, as illustrated in Figure 3.1, each agent memorizes the constraints it

passes to the next agents. If the constraints caused that one of the following agents is not able to

generate any plan, the requesting agents do not require such constraints for the next agents any

more.

For an instance depicted in Figure 3.1, at point when agent ag2 generates plan π2 together

with its constraints c1,2, it memorizes the constraints c1,2 before passing them to ag3. Let us

assume the constraints caused ag3 unable to generate any individual plan depicted as /0. The agent

ag2 memorizes this information and introduces new constraint into its CSP assignment that will

eliminate generating of such plans in future, that restricts the agent ag3 as c1,2 did.

For an instance, c1,2 = ({},{(a3,1),(a4,2)}), where (a3,1) restricts ag3 to perform action a3

in level 1 and (a4,2) restricts ag4 to perform action a4 in level 2. Since ag3 could not find any plan

that satisfies restriction (a3,1), agent ag2 should not generate such plans. Thus, ag2 introduces

new constraint into its CSP assignment that will eliminate plans having action a3 in level 1. This

will cause agent ag2 to eliminate generating of the plans that agent ag3 cannot satisfy.

3.3.2 Ordering of agents

Ordering of the agents turned out to be crucial for the DPGM algorithm to work efficiently. It is

necessary to separate agents that have an individual goal from those that have no goal, but whose
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cooperation might be required somewhere during the plan. Let Ag be a set of all agents having

an individual goal and let As be a set of all agents without their own goals, so that Ag∪As = A

and sets Ag and As are disjunctive. As the plan search progresses the actual agents’ ordering

dynamically changes. The ordering starts with a random agent from the set Ag, lets call him

ag1. Note, that the set Ag cannot be empty at this point, if it was, we have no goal, therefore the

problem would be unsolvable. Afterwards, a plan π1 is generated together with the constraints

c1. Next agent, lets call him ag2, is selected by looking which cooperation is required in req(π1)

from the c1. If there are more such agents, then those in Ag are prioritized over the agents from

As. After generating new π2 and c1,2, the hole process is repeated. If at any point c1,...,α has no

requirements on the other agents, although Ag or As are not empty yet, it means that there exists

a goal reaching plan without cooperation of the agents remaining in Ag and As sets. Notice that

this may happen even for Ag, although I said that these are agents with goals. This may happen

in the case, if a goal proposition can be reached by more than one agent and an agent that is not

in Ag have reached it. Algorithm 5 shows the selection of the next agent. As an input it receives

the last agent’s plan πα , constraints c1,...,α−1 of agents ag1, . . . ,agα−1, and the two disjunctive sets

of agents: set of agents with goal Ag and set of agents without goals As. First it computes new

constraint c1,...,α and extracts Arequired , the set of agents whose cooperation is required there in

req(π1,...,α−1). Then the algorithm selects one of the agents from this set, prioritizing the agents

from Ag over the agents in As.

3.3.3 Removing unnecessary actions

Since I used pure PDDL parser to read the domain and the problem from the files, we could end up

with useless actions. For example, in the simplest LOGISTICS problem these actions are following:

(drive car1 place1 place1) or (fly plane1 airport1 airport1). The reason that these actions are

useless is because they do not change the state in any way. These actions can be generalized as
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Algorithm 5: Select Next Agent
input : πα ; // last agent’s plan

c1,...,α−1 = (com(π1,...,α−1),req(π1,...,α−1)); // requirements that agent
agα received

Ag; // agents with goals
As; // agents without goals

output: agselected; // next agent, to whom c1,...,α will be sent

cα ← (com(πα),req(πα));
c1,...,α ← (com(π1,...,α−1)∪ com(πα),req(π1,...,α)∪ req(πα));
Arequired ← agents whose cooperation is required in req(π1,...,α) but are not in
com(π1,...,α);
Acontributed ← agents who contributed to com(π1,...,α);
if Arequired ∩ (Ag \Acontributed) 6= /0 then

agselected ← select arbitrary agent from Arequired ∩ (Ag \Acontributed) 6= /0;
return agselected;

else
agselected ← select arbitrary agent from Arequired ∩ (As \Acontributed) 6= /0;
return agselected;

end

a = 〈pre(a),add(a),del(a)〉, where add(a) = del(a). Moreover, actions as STRIPS defines them,

have a requirement add(a)∩ del(a) = /0. But a pure PDDL parser cannot hold this requirement

while parsing. Hence, these actions had to be removed in the algorithm.

3.4 Implementation

Implementation of the DPGM algorithm was carried out in Java programming language on Net-

Beans IDE 7.1.2. Flowchart of the whole algorithm is illustrated in Figure 3.2. Blue rectangles

represent the phases of the procedures, while white rectangles comment under what conditions

their paths are selected in the run. The complex procedure phases are explained as follows (the

self-explanatory procedures are skipped):

PDDL parser takes on its input the domain and problem files and returns the problem description
P = 〈P,A , I,G〉, where P is set of all propositions, A is set of agents, I ⊆ P is set of initial
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propositions and G⊆ P is set of goal propositions. This process is done externally by calling
the PDDL4J parser.

Remove agent’s unnecessary actions - the optimization described in the section 3.3.3.

Goal decomposition phase - the exact implementation of the Algorithm 3.

Planning graph expansion phase - expands the planning graph of every agent by one level as
described in section 3.2.2; if the fixed point is reached, then algorithm terminates.

Planning graph merging phase - in this phase each agent shares with the other agents the actions
of its planning graph’s last level; others select the threats and promotions and include them
into their planning graphs.

Select next agent agi who has not contributed to the plan - this selection follows the rules de-
scribed in the section Ordering of Agents 3.3.2.

Include constraint c into its CSP - in this phase agent agi builds the CSP problem from its plan-
ning graph, and additionally includes there the constraint c = (req(π),com(π)); it is imple-
mentation of the coordination section 3.2.4.

Extract a plan - in this phase the algorithm calls an external CSP solver (in my implementation
Minion Solver or Choco Solver) with the CSP problem; the returned result converts into the
plan

Compute new constraint c and memorize it - new constraint is computed as described in the
Example 3.2.5 and memorization is the Constraint Cache optimization described in 3.3.1.

Backtrack to the previous agent - sets the previous agent as the current agent to extract new plan

Check the plan’s validity by progression - in this verification phase algorithm runs the plan to
check if it actually reaches the goal without mutexes.
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Figure 3.2 Flowchart of the DPGM implementation.
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Chapter 4

PDDL Adaptation for Multiagent Planning

4.1 PDDL

Planning Domain Definition Language (PDDL) is language for describing the planning problems.

It was inspired by previous languages and formalisms such as ADL, SIPE-2, Prodigy-4.0, UMCP,

Unpop and UCPOP [1]. Each planning problem consists of the domain description, the world in

which the problem occurs and the problem description, that states what is the actual task.

In the domain descriptions the mandatory and most important definitions are following:

Types defines types of the objects, that occur in the problem. Types are defined hierarchically

with the basic built-in types object and number. The typical types could be locations,

packages, vehicles, cities, trucks, air planes, agents, etc.

Predicates represent a features, a property or any true/false statement about one or more objects.

Predicates are in parenthesis, where first string is the name of the predicate, followed by

input variables. Typical predicates are (at ?car - vehicle ?loc - location), (at

?a - (either package vehicle location) ?c - city), etc. Variables starts with ?

and must be followed by dash and its type. Construction (either <type1> <type2> ...)

31
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denotes, that variable may be any of the listed types.

Actions define actions that can be performed in this world. Every action a= 〈pre(a),add(a),del(a)〉

is defined by preconditions pre(a), the positive effects (or add-effects) add(a) and negative

effects (or del-effects) del(a). Notion of every actions in PDDL is following (without the

angle brackets):

(:action␣<action-name>
:parameters␣(?<v1>␣-␣<type-of-v1>␣...␣?<vn>␣-␣<type-of-vn>)
:preconditions␣(and␣(<pre1>)(<pre2>)...(<pren>))
:effect␣(and␣(<add1>)...(<addn)(<del1>)...(<deln>))

)

The problem description defines:

• which domain description it uses,

• the objects used in the problem,

• the initial state by listing the preconditions that hold there, and

• the goal state by listing the preconditions that must hold there.

4.1.1 PDDL Example

Lets show a simple example of the logistics planning problem. This simple logistics planning

problem consists of locations, airports, cities, trucks and airplanes. Each location and airport is

assigned to a city. Trucks can drive only between the locations (including the airport) in the same

city and airplanes can fly only between the airports between the cities. The problem consists of

transporting one or more packages from their initial location to a goal location. Typical plan is that

car has to drive the package from initial location to the airport within one city, where the package

is passed to the airplane, who will fly to the airport in a different city, and another truck takes over

the package again, and drives it to the desired location. The domain description is following:
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(define (domain logistics)
(:requirements :strips :typing)
(:types package location vehicle - object

truck airplane - vehicle
city airport - location)

(:predicates
(at ?vehicle-or-package - (either vehicle package) ?location - location)
(in ?package - package ?vehicle - vehicle)
(in-city ?loc-or-truck - (either location truck) ?citys - city))

(:action load-truck
:parameters (?obj - package ?truck - truck ?loc - location)
:precondition (and (at ?truck ?loc) (at ?obj ?loc))
:effect (and (not (at ?obj ?loc)) (in ?obj ?truck)))

(:action load-airplane
:parameters (?obj - package ?airplane - airplane ?loc - airport)
:precondition (and (at ?obj ?loc) (at ?airplane ?loc))
:effect (and (not (at ?obj ?loc)) (in ?obj ?airplane)))

(:action unload-truck
:parameters (?obj - package ?truck - truck ?loc - location)
:precondition (and (at ?truck ?loc) (in ?obj ?truck))
:effect (and (not (in ?obj ?truck)) (at ?obj ?loc)))

(:action unload-airplane
:parameters (?obj - package ?airplane - airplane ?loc - airport)
:precondition (and (in ?obj ?airplane) (at ?airplane ?loc))
:effect (and (not (in ?obj ?airplane)) (at ?obj ?loc)))

(:action drive-truck
:parameters (?tr - truck ?loc-from - location ?loc-to - location ?city - city)
:precondition (and (at ?tr ?loc-from) (in-city ?loc-from ?city)

(in-city ?loc-to ?city))
:effect (and (not (at ?tr ?loc-from))(at ?tr ?loc-to)))

(:action fly-airplane
:parameters (?airplane - airplane ?loc-from - airport ?loc-to - airport)
:precondition (at ?airplane ?loc-from)
:effect (and (not (at ?airplane ?loc-from)) (at ?airplane ?loc-to))))

The problem description could be following:

(define (problem pb3)
(:domain logistics)
(:requirements :strips :typing)
(:objects

package1 package2 package3 - package
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airplane1 airplane2 - airplane
pgh bos la - city
pgh-truck bos-truck la-truck - truck
pgh-po bos-po la-po - location
pgh-central bos-central la-central - location
pgh-airport - (either airport location)
bos-airport - (either airport location)
la-airport - (either airport location))

(:init
(in-city pgh-po pgh)
(in-city pgh-airport pgh)
(in-city pgh-central pgh)
(in-city bos-po bos)
(in-city bos-airport bos)
(in-city bos-central bos)
(in-city la-po la)
(in-city la-airport la)
(in-city la-central la)
(at package1 pgh-po)
(at package2 pgh-po)
(at package3 pgh-po)
(at airplane1 pgh-airport)
(at airplane2 pgh-airport)
(at bos-truck bos-po)
(at pgh-truck pgh-po)
(at la-truck la-po))

(:goal (and
(at package1 bos-po)
(at package2 la-po)
(at package3 bos-po))))

Figure 5.1 illustrates the problem’s initial state. Green arrows depicts the tasks, that trucks and

airplanes have to accomplish, i.e., move the packages from pgh-po to bos-po and la-po.

4.1.2 PDDL Adaptation for Multiagent Planning

PDDL language does not support the ability to define agents and actions they can perform as it is

required in multiagent planning. There is an extension for PDDL 3.1 that enables it [9], however,

the parser itself is not available for downloading as far as I know. Thus, I came up with a method

how to alter the domain and problem description as well as the algorithm, that will enable the

multiagent planning problem assignments. It requires two steps: (i) assigning an action to an



4.1 PDDL 35

Figure 4.1 An example of a simple logistics problem.

agent and (ii) limiting an action as necessary. Assigning an action to an agent is an easy part. In

the domain description an action can be assigned to a specific agent by adding string agent<#>-

at the beginning of the name of that action. The algorithm will interpret it in such a way that

this action can be performed only by the agent ag#. If name of the action does not start with

agent<#>- it means that all agents can perform that action. In the second part the action has to

be limited if necessary. Lets say agent ag1 is a truck that can drive only within a specific city,

thus, agent’s action agent1-drive has to be disallowed to drive within other cities or between the

cities. This is done by introducing new type of object that is common for all locations where agent

can drive. It does not have to represent a real object, but will be included in all actions of that



36 Chapter 4 PDDL Adaptation for Multiagent Planning

agent. Consequently, the object has to be properly defined in the problem description.

Following example will clarify the procedure. Assume I want to alter a simplified version of

the logistics problem from the section 4.1.1 PDDL Example for the multiagent planner. Simplified

version will contain only two cities, pgh and bos with their trucks and only one plane airplane1.

Each mean of transport will represent an agent. Agent ag1 is bos-truck that can drive, load and

unload only within the bos city, similarly agent ag2 is the pgh-truck that can drive, load and

unload only within the pgh city and agent ag3, the airplane1, can fly, load and unload only in

locations pgh-airport and bos-airport. The domain description of this planning problem is

following:

(define (domain logistics)
(:requirements :strips :typing)
(:types agent package location vehicle city - object

truckbos truckpgh airplane1 - vehicle
truck1 truck2 plane1 - agent
airport locationbos locationpgh - location)

(:predicates (at ?vehicle-or-package - (either vehicle package) ?location - location)
(in ?package - package ?vehicle - vehicle)
(in-city ?locOrTruck - (either location truckbos truckpgh) ?city - city))

(:action agent1-load-truck
:parameters (?ag - truck1 ?obj - package ?truck - truckbos ?loc - locationbos)
:precondition (and (at ?truck ?loc)(at ?obj ?loc))
:effect (and (not (at ?obj ?loc))(in ?obj ?truck)))

(:action agent1-unload-truck
:parameters (?ag - truck1 ?obj - package ?truck - truckbos ?loc - locationbos)
:precondition (and (at ?truck ?loc)(in ?obj ?truck))
:effect (and (not (in ?obj ?truck))(at ?obj ?loc)))

(:action agent1-drive-truck
:parameters (?ag - truck1 ?tr - truckbos ?from - locationbos

?to - locationbos ?city - city)
:precondition (and (at ?tr ?from) (in-city ?from ?city) (in-city ?to ?city))
:effect (and (not (at ?tr ?from)) (at ?tr ?to)))

(:action agent2-load-truck
:parameters (?ag - truck2 ?obj - package ?truck - truckpgh ?loc - locationpgh)
:precondition (and (at ?truck ?loc)(at ?obj ?loc))
:effect (and (not (at ?obj ?loc))(in ?obj ?truck)))

(:action agent2-unload-truck
:parameters (?ag - truck2 ?obj - package ?truck - truckpgh ?loc - locationpgh)
:precondition (and (at ?truck ?loc)(in ?obj ?truck))
:effect (and (not (in ?obj ?truck))(at ?obj ?loc)))

(:action agent2-drive-truck
:parameters (?ag - truck2 ?truck - truckpgh ?from - locationpgh
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?to - locationpgh ?city - city)
:precondition (and (at ?truck ?from)(in-city ?from ?city)(in-city ?to ?city))
:effect (and (not (at ?truck ?from))(at ?truck ?to)))

(:action agent3-load-airplane
:parameters (?ag - plane1 ?obj - package ?airplane - airplane1 ?loc - airport)
:precondition (and (at ?obj ?loc)(at ?airplane ?loc))
:effect (and (not (at ?obj ?loc))(in ?obj ?airplane)))

(:action agent3-unload-airplane
:parameters (?ag - plane1 ?obj - package ?airplane - airplane1 ?loc - airport)
:precondition (and (in ?obj ?airplane)(at ?airplane ?loc))
:effect(and (not (in ?obj ?airplane))(at ?obj ?loc)))

(:action agent3-fly-airplane
:parameters (?ag - plane1 ?airplane - airplane1 ?from - airport ?to - airport)
:precondition (at ?airplane ?from)
:effect (and (not (at ?airplane ?from))(at ?airplane ?to))))

The common object for all locations in ny is the locationny. And since locationny is

included in every action that the truck ny-truck can perform, its actions will be limited for the ny

city. Similarly for the other agents. The problem description then is as follows:

(define (problem logistics-e2)
(:domain logistics)
(:requirements :strips :typing)
(:objects

package1 - PACKAGE
airplane1 - AIRPLANE
pgh - CITY
bos - CITY
bos-truck - TRUCKNY
pgh-truck - TRUCKPGH
pgh-po - LOCATIONPGH
bos-po - LOCATIONNY
pgh-airport - (either LOCATIONPGH AIRPORT)
bos-airport - (either LOCATIONNY AIRPORT)
ag1 - truck1
ag2 - plane1
ag3 - truck2)

(:init (in-city pgh-po pgh)
(in-city pgh-airport pgh)
(in-city bos-po bos)
(in-city bos-airport bos)
(at package1 pgh-po)
(at airplane1 pgh-airport)
(at pgh-truck pgh-po)
(at bos-truck bos-po))

(:goal (at package1 ny-po)))
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Chapter 5

Experiments

5.1 Domains

The experiments were carried out on five different domain, three of which were taken from the

International Planning Competition benchmarks adapted for multiagent planning: ROVERS, LO-

GISTICS, SATELLITES. The additional two are: LINEAR LOGISTICS and DECONFLICTION. Each

domain was tested on several problems with various numbers of agents. In the following sec-

tions I will describe each domain [11] and each problem from that domain that were used in the

experiments.

5.1.1 Rovers

This planning problem is inspired by NASA Mars Exploration Rovers, where each rover has a mis-

sion to collect specific data about the environment on Mars and communicate them back to the lan-

der. The STRIPS version of this planning problem consists of multiple rovers that represent agents.

Each rover is equipped with tools for soil analysis, rock analysis and imaging, and a storage. An

analysis or an image has to be taken from specific waypoints, to which rovers have to transport

39
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themselves through the other visible waypoints. After rover collects all required data about the

objectives, it communicates them to the lander. Only one rover can communicate at a time, which

makes the situation even more difficult. Every agent can perform following actions: navigate,

sample-soil, sample-rock, drop, calibrate, take-image, prepare-to-communicate-soil-data, prepare-

to-communicate-rock-data, prepare-to-communicate-image-data and communicate-all-data.

In the problem rover-a2 there are two rovers, 8 waypoints and 4 objectives; in rover-a3 there

are three agents, 12 waypoints and 6 objectives, and in rover-a4 there are four rovers, 15 waypoints

and 8 objectives.

5.1.2 Satellites

This problem is inspired—as the name indicates—by the satellites, that collect spectrographic and

thermographic images of the planet they orbit. Satellites take images under different directions

using different instruments set on one of the multiple modes. The problem is to plan the most effi-

cient way to cover the observation given the satellite capabilities. Satellites can perform following

actions: turn-to - turns to a new direction; switch-on and switch-off - switches on and off

the instrument; calibrate - calibrates chosen instrument to a specific direction; and take-image

- takes an image with an instrument under certain mode over particular direction.

The satellite-a6 problem contains 6 satellites and 12 directions, the satellite-a8 problem con-

tains 8 satellites and 16 directions, and problem satellite-a10 contains 10 satellites and 20 direc-

tions.

5.1.3 Logistics

As logistics problem was discussed generally in 4.1.2 PDDL Adaptation for Multiagent Planning,

in this section only specific planning problem used in experiments will be described.

The log-a4 contains two cities: pgh and ny, both of which have two locations, a po locations
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and an airport locations. Both cities have one truck that can drive between the two locations

within the city, and there are two air-planes that can fly between the airports. The goal is to deliver

two packages, one package from pgh-po to ny-po, and the other one from ny-po to pgh-po. The

log-a6 contains four cities: pgh, ny, def and abc, each of which has two locations, a po locations

and an airport locations. Each city has one truck that can drive between the two locations, and

there are two air-planes in total. The goal is to deliver two packages, one from pgh-po to the

ny-po and one from abc-po the def-po.

5.1.4 Linear Logistics

In this problem the locations are situated in a chained-wise manner one after another, and a package

has to be transported from the location on one end of the chain to the location on the another

end of the chain. Situation is complicated by the fact, that every truck can drive only between

neighbouring locations in this chain, thus, package has to be passed over from one truck to another

in every location.

Problems differ in the numbers of the locations and a corresponding number of the trucks,

which is one less than the number of locations. Problem log-lin-a6 consists of 6 trucks and 7

locations, problem log-lin-a8 of 8 trucks and 9 locations, problem log-lin-a10 of 10 trucks and 11

locations and finally, log-lin-a15 of 15 trucks and 16 locations. Problems are depicted in 5.1.

5.1.5 Deconfliction

In this problems the robots, who represent the agents, initially are located on one of the squares in

a three times three grid. Its task is to switch its positions with the position of an another robot in

non-collision way.

The problem deconf-a2 consists of two robot that have to switch their positions, as illustrated on

the left in 5.2. In the problem deconf-a3 three robots have to switch positions with the neighbouring
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Figure 5.1 Used linear logistics problems in experiments.

robot, as illustrated on the right in 5.2.

Figure 5.2 Used deconfliction problems in expeirments.

5.2 Experiment settings

All experiments were run on 8-core processor at 3.6GHz with 2.5GB limit on memory and 10

minutes time limit. I used time and communicated bytes as metrics for the comparison of the

algorithms. Each problem was run 10 times and time averages were calculated.



5.2 Experiment settings 43

domain-agents M M sdf M sac M sdf sac M srf Choco comm.
rover-a2 8.9s 13.3s 7.3s 7.7s 3.8s 11.7s 69kB
rover-a3 6.6s 6.0s 11.9s 11.6s 20.3s 17.4s 234kB
rover-a4 – – – – – 76.1s 234kB
log-a4 0.9s 0.4s 0.4s 0.3 0.3s 1.2s 34kB
log-a6 0.7s 0.7s 0.7s 0.7 0.6s 1.3s 136kB
log-lin-a6 0.5s 0.5s 0.5s 0.5 0.5s 0.3s 167kB
log-lin-a8 0.7s 0.7 0.8 0.7 0.7s 0.5s 417kB
log-lin-a10 0.9s 0.9s 1.0s 1.0s 0.9s 0.7s 849kB
log-lin-a15 1.6s 1.6s 2.0s 2.0s 1.6s 1.8s 2.9MB
deconf-a2 – 6.4s – 3.2s 1.3s (OoM) 18kB
deconf-a3 0.2s – 0.3s 199.6s 0.2s 0.1s 13kB
deconf-a4 – – – – – (OoM) –
satellite-a6 1.6s 1.4s 1.3s 1.4 1.5s 4.6s 266kB
satellite-a8 5.0s 4.4s 4.5s 4.5s 4.3s 24.8s 793kB
satellite-a10 14.3s 13.2s 13.8s 14.0s 12.7s 101s 1.8MB

Table 5.1 Comparison of CSP solvers used in DPGM. The dash – means that the time
limit was exceeded and OoM that memory was exceeded.

5.2.1 Comparison of Used CSP Solvers in DPGM

As DPGM algorithm uses CSP solver for the local plan extraction, I had to decide which solver

would serve the best. Two CSP solvers were tested: Choco CSP Solver1 and Minion CSP Solver2.

Choco solver was tested with its basic setting, while Minion was tested over several settings:

(M)—the default setting; (M sdf)—with smallest-domain-first variable order; (M sac)—with SAC

preprocessing; (M srf sac)—combination of the previous two settings, and (M srf)—smallest-ratio-

first order. Table 5.1 shows the times DPGM took to solve the problems using certain CSP solvers

and settings. Although Minion solver showed to be sometimes unstable and did not return any

result over the longer period of time, which is represented in the table as a dash – it was faster, than

Choco solver. Another Minion’s disadvantage is that if the problem is unsolvable, it is inefficiently

detected, since it has to go through all the possibilities in the search space. Last column (comm.)

1http://www.emn.fr/z-info/choco-solver/
2http://minion.sourceforge.net/
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in Table 5.1 shows the communicated bytes among the agents. As the CSP solver is used only for

local extraction of a plan, the number are the same for all the solvers. In the deconf-a3 problem,

although the number of agents is higher than in deconf-a2, the results are better. This is caused

by the particular problem instance, where the agents in the a2 case has to pass by each other,

and therfore the solution is found not before 4th level, however, in a3 the agents only rotates and

therefore the solution is found in 2nd level.

5.2.2 Comparison of the Multiagent Planners

domain-agents DPGM DisCSP+Plan. MAD-A*
rover-a2 3.8s/69kB 1.4s/0.8kB 22.4s/52kB
rover-a3 20.3s/234kB 7.9s/1.7kB 230s/2.5MB
rover-a4 – 62.3s/3.1kB –
log-a4 0.3s/34kB 0.6/15kB 0.8s/77kB
log-a6 0.6s/136kB 38.5/7.1MB 2.0s/320kB
log-lin-a6 0.5s/167kB – 1.7s/87kB
log-lin-a8 0.7s/417kB – 4.7s/254kB
log-lin-a10 0.9s/849kB – 15.4s/589kB
log-lin-a15 1.6s/2.9MB – 217s/4.2MB
deconf-a2 1.3s/18kB N/A 0.9s/15.3kB
deconf-a3 0.2s/13kB N/A 1.2s/187kB
deconf-a4 – N/A 3.8s/2.1MB
satellite-a6 1.5s/266kB 4.4/6.5kB 7.4s/270kB
satellite-a8 4.3s/793kB – 37.5s/964kB
satellite-a10 12.7s/1.8MB – 189s/2.5MB

Table 5.2 Comparison of DPGM, DisCSP+Planning and MAD-A* with set-additive
heuristics. The dash – means that the time or memory limit was exceeded. N/A means
the planner did not return a sound plan.

In the final experiment, the DPGM algorithm was compared to other two cited algorithms.

Table 5.2 shows results. As the srf setting of Minion showed the best results—especially because

of its ability to solve most of the presented problems—I chose it for comparison with the other
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algorithms.

The results show that DPGM performs well in decoupled domains, which are rather combinato-

rially easy (LOGISTICS, LINEAR LOGISTICS, and SATELLITES). The DisCSP+Planning is efficient

in problems which are combinatorially hard from perspective of individual planning (ROVERS), as

the internally used planner is highly efficient FastForward. The used implementation of MAD-A*

with set-additive heuristcs was most effective in highly coupled domains (DECONFLICTION).

5.3 Discussion

DPGM showed its strength based on efficient factorization of the problems. However problems

as DECONFLICTION, which are coupled and require high combinatorial search, DPGM solves

rather inefficiently, if at all. The way CSP generated the plans hindered the performance of the

algorithm. For instance, the first plan that the agent ag1 generated in 4th level of the deconf-

a4 problem, consisted of its own actions, leading the agent to the goal, additionally the agent

generated requirements for the agent ag2 to prevent future collisions. However, the requirements

were unreasonable: instead of requiring one action that would suffice for agent ag1, it built a whole

plan for the ag2. And since ag1 did not know the ag2’s goal, the plan was usually invalid. I tried

to avoid this, by stating to minimize requirements put on other agents in the CSP Solver. This

approach helped to lower the number of constraints; however, the solution of such CSP became

combinatorially more complex and therefore did not bring much improvement in efficiency. The

DPGM efficiency depends very much on the CSP solver that it uses. In table 5.1 it illustrates the

ROVER-A4 problem, where Minion solver failed to find a result, however Choco solver found it in

a comparable time as DisCSP+Planning from the table 5.2. On the other hand, Minion only with

certain settings was able to solve the DECONF-A2 problem very fast, while other settings and the

Choco solver failed to solve it at all. Additionally, the result shows that Minion with sdf and sac
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solves the problem DECONF-A3 in 199.6s, while other settings (except the M sdf) solve it under

0.4s. This number 199.6s is due to the more runs, where sometimes Minion solved it fast, but the

other times it was unstable and took more then 270s to solve it. In my opinion, if good CSP solver

is found and adjusted to run ina desired way, much better results could be achieved. Deeper study

of CSP selection, its adjustment and other phenomenons remains for the future work.



Chapter 6

Conclusion

This work focused on three distinctive algorithms for solving the distributive multiagent planning

problems. Two of which, the DisCSP+Planning and MA-A* algorithms, were already imple-

mented and experimentally tested, while the third, DPGM algorithm, was studied in details and

implemented. Moreover, I introduced a few optimizations that improved the algorithm. The algo-

rithm was experimentally tested over five different problem domains, that first had to be adapted for

the multiagent purposes. Experimental results show the DPGM algorithm to be very effective in

problems where agents are not tightly coupled, however less effective in tightly coupled problems.
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Appendix A

List of used symbols

In planning in general:

p ∈ P — is a propositions from P, the set of propositions.

s ∈ S — is a state in search space. Each state s is represented as a set of propositions from P. So
S= P(P), is the powerset of P.

A — is set of action, where each action a∈A is a tripe a= 〈pre(a),add(a),del(a)〉 and pre(a),add(a),del(a)⊆
P.

app — is an application function S×A→ S. For a given state and action it return a new state.

Σ = (S,A,app) — represents the planning domain.

P — represents the planning problem. Generally P = (Σ,s0,G). But for planning problems for
STRIPS-like syntax P = (P, I,G,A) is used. For the multiagent planning P = (P,A , I,G).

G⊆ P — is a set of goal propositions.

I ⊆ P,s0 ∈ S — is a set of propositions that hold in the initial state.

π — is an individual plan. In totally ordered plan π = 〈a0, . . . ,aN〉,ai ∈ A, and in partially ordered
plan π = 〈A0, . . . ,AL〉,Ai ⊆ A.

In multiagent planning:

L — is the length of the plan.

πα — is an individual plan of agent agα .
49
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Π — is a global plan that contains actions for all agents.

K — is the number of agents in multiagent planning domain.

A = {agα}K
α=1 — is set of agents.

Aα — is set of actions that agent agα can perform.

noopp — is an noop, or maintenance action, for propositions p ∈ P if noopp = 〈{p},{p},{}〉.

Oi ⊆ A — is an i-th action level in plangraph

Si ⊆ P — is an i-th proposition level in graphplan

µOi — is set of mutexes between actions in i-th level of the plangraph.

µSi — is set of mutexes between actions in i-th level of the plangraph.

Gα — is individual goals of agent agα .

pgα = 〈pg1
α , . . . , pgL

α〉 — is agent agα ’s plangraph and pgi
α is i-th level of pgα plangraph.

π1,...,α — is union of plans from agents ag1, . . . ,agα in respective levels.

(a, i) — is a commitment or requirement constraint that restricts action a to be performed in i-th
level.

com(π1,...,α) — is set of commitment constraints of agents ag1, . . . ,agα .

req(π1,...,α) — is set of requirement constraints from agents ag1, . . . ,agα to agents agα+1, . . . ,agK .

Ag ⊆A — is set of agents that have non-empty set of individual goals (Gα = /0)

As ⊆A — is a set of agents that have at least one individual goal (Gα 6= /0)



Appendix B

Content of the CD

CD

|- DPGM/ (NetBean project of the DPGM algorithm)

|- DPGMRunner/ (NetBean project of framework that runs DPGM over all problems)

|- domains/

|- rovers/ (rover problems)

|- deconfliction/ (deconfliction problems)

|- lin-logistics/ (lin-logistics problems)

|- logistics/ (logistics problem)

|- satellites/ (satellites problems)

|- karelDurkota.pdf (this Diploma Thesis)

|- choco-solver-2.1.5.jar (used Choco solver)

|- minion-0.15-windows.tar.gz (used Minion solver)

|- pddl4j.jar (used PDDL parser)
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