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Abstract

Multiagent planning for cooperative agents in deterministic
environments intertwines synthesis and coordination of the
local plans of involved agents. Both of these processes re-
quire an underlying structure to describe synchronization of
the plans. A distributed planning graph can act as such a
structure, benefiting by its compact representation and effi-
cient building. In this paper, we propose a general negotiation
scheme for multiagent planning based on planning graphs.
The scheme is designed as independent on a particular local
plan synthesis approach.

To demonstrate the proposed principle, we have implemented
the negotiation scheme as an algorithm with a concrete tech-
nique for the local plan synthesis based on compilation of
the local planning problems to SAT problems. Results of the
negotiation further shape the SAT problems so that agents co-
ordinate their plans and avoid possible conflicts in an iterative
manner. The paper is concluded by showing a set of experi-
ments which demonstrate a trade-off between planning effi-
ciency (by means of time and communication) and increasing
amount of public information in the planning problem.

Introduction
Intelligent agents embodied in an environment have to be
able not only to selfishly push the world towards their own
goals but also to cooperate on common goals with their
neighbors and solve mutual conflicts if their plans interfere.
Multiagent planning, an umbrella term for such behavior,
deals with challenges both on (i) the synthesis of actions
into individual agents’ plans and on (ii) the coordination of
the agents’ plans in a shared environment. A generally us-
able approach to multiagent planning has to be able to deal
with a wide range of application domains without any fixed
domain-specific knowledge.

In such cases of domain-independent planning, the in-
put to the planning process does not contain only the initial
and goal conditions on the environment, but also description
of the problem domain. Such approaches allow the agents
to prepare plans flexibly according to their knowledge of
the environment mechanics. From the practical perspective,
domain-independent techniques can be reused in various cir-
cumstances, where the agents are required to plan.

In one of the most cited works on multiagent planning
(Durfee 1999), Durfee describes basics of possible coordi-
nation schemes for planning agents. From the taxonomy pre-
sented there, our approach falls into a distributed planning
of distributed plans which do not assume either the plan-
ning process or the resulting plan to be centralized. There
is a large amount of work dealing with another facets of
the coordination part of the problem, e.g. GPGP (Decker
and Lesser 1992), or TALPlanner (Doherty and Kvarnström
2001). In 2008, Brafman and Domshlak proposed multia-
gent planning in (Brafman and Domshlak 2008) which tar-
geted deterministic environments and was based on an ex-
tension of the classical planning model STRIPS (Fikes and
Nilsson 1971). The results of the paper showed that deter-
ministic domain-independent multiagent planning is not ex-
ponentially dependent on the number of agents in the com-
putational sense.

The approach we propose in this paper can be seen as a
merge and extension of two previous approaches. The first
one is from Zhang et al. presented in (Zhang, Nguyen, and
Kowalczyk 2007). The idea behind it is based on distribution
of a well-known structure—a planning graph—and compi-
lation of the planning problem into a DisCSP problem. The
other approach authored by Pellier in (Pellier 2010) is also
based on distributed planning graphs, however for the local
plan extraction each agent uses a centralized CSP solver and
the coordination of their plans is done by a backtracking ap-
proach resembling prioritized planning.

Our contribution in this work is threefold. Firstly, we
have generalized the predetermined coordination part (done
by Zhang at al. as DisCSP and Pellier as prioritized plan-
ning) by a decentralized approach based on novel negotia-
tion scheme. This negotiation scheme extends our scheme
published in (Tožička et al. 2014) by handling new types of
other agent responses. Secondly, we propose a way how to
supersede the Pellier’s CSP-based extraction of local plans
by compilation to SAT problems. And finally, we have de-
signed and implemented an extension of the planning graph
structure by state-of-the-art planning modeling approach
SAS+ (Huang, Chen, and Zhang 2012). We also experimen-
tally show a trade-off between planning efficiency (by means
of computation time and communication) and increasing
amount of public information in the planning problem.
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Planning Model
We consider a number of cooperative and coordinated
agents featuring distinct sets of capabilities (actions) which
concurrently plan and execute their local plans in order to
achieve a joint goal. The environment wherein the agents
act is classical with deterministic actions. The following for-
mal preliminaries compactly restate the MA-STRIPS prob-
lem (Brafman and Domshlak 2008) required for the follow-
ing sections.

This model, together with proofs of lemmas and theo-
rems, has been already published in (Tožička et al. 2014).
Nevertheless, we consider it necessary to repeat basic defi-
nitions and lemmas to make paper standalone.

Planning Problem

An MA-STRIPS planning problem Π is defined as a quadru-
ple Π = 〈P,A, I, G〉, where P is a set of propositions, A is
a set of agents α1, . . . , α|A|, I is an initial state and G is a
set of goals.

An action an agent can perform is a triple a =
〈apre, aadd, adel〉 of subsets of P , where apre is the set
of preconditions, aadd is the set of add effects, and adel
is the set of delete effects. We define functions pre(a),
add(a), and del(a) such that for any action a it holds a =
〈pre(a), add(a), del(a)〉. Moreover let eff(a) = add(a) ∪
del(a).

We identify an agent with its capabilities, that is, an agent
α = {a1, . . . , an} is characterized by a finite repertoire of
actions it can preform in the environment. Let AΠ denote the
set of all actions in a problem Π, that is, AΠ =

⋃

α∈A α. A

state s = {p1, . . . , pm} ⊆ P is a finite set of facts and we
say that pi’s hold in s.

Public and Internal Actions

MA-STRIPS problems distinguish between the public and
internal facts and actions. Let facts(a) = pre(a)∪ add(a)∪
del(a) and similarly facts(α) =

⋃

a∈α facts(a). An α-

internal and public subset of all facts P , denoted Pα-int and
P pub respectively, are subsets of P such that the following
hold.

P pub ⊇
⋃

α∈A

(

facts(α) ∩
⋃

β∈A\{α} facts(β)
)

Pα-int = facts(α) \ P pub

Set P pub contains all the facts that are used in actions of
at least two different agents. The set can possibly contain
also other facts, that is, some facts mentioned in actions of
one agent only. This definition of public facts differs from
other definitions in literature (Brafman and Domshlak 2008)
where P pub is defined using equality instead of superset
(⊇). Our definition, however, allows us to experiment with
extensions of the set of public facts and this is discussed
below in experiment section. We suppose that P pub is an ar-
bitrary but fixed set which satisfies the above condition. Set
Pα-int of α-internal facts contains facts mentioned only in
the actions of agent α, but possibly not all of them.

The set Pα of facts relevant for a single agent α is defined
as Pα = Pα-int ∪P pub. The projection aS of an action a to

a set of facts S is a restriction of a containing only facts from
S, that is, aS = 〈pre(a) ∩ S, add(a) ∩ S, del(a) ∩ S〉. The

projection aα of action a to agent α is defined as a(P
α) and

the public projection apub of action a is defined as a(P
pub).

The set αpub of public actions of agent α is defined as
αpub = {a | a ∈ α, eff(apub) 6= ∅} and the set αint of

internal actions of agent α as αint = α\αpub. The set A
pub
Π

of all public actions of problem Π is defined as A
pub
Π =

⋃

α∈A αpub. Aα
Π the set of all actions known by agent α is

then Aα
Π = αint ∪ {aα|a ∈ A

pub
Π }.

In the rest of this paper we consider only problems Π
where all the propositions from the goal state G are public,
that is, G ⊆ P pub which is common in literature (Nissim
and Brafman 2012)1. Moreover we suppose that two differ-
ent agents do not execute the same action, that is, we sup-
pose that the sets αi’s are pairwise disjoint (Brafman and
Domshlak 2008).

Plans, Solutions, and Projections

The projection Πα of a problem Π to agent α is a classical
STRIPS problem defined as follows.

Πα = 〈Pα,Aα
Π, I ∩ Pα, G〉

Given an MA-STRIPS problem Π, a plan π =
〈a1, . . . , ak〉 is a sequence of actions from AΠ. A plan π
defines an order in which actions are to be executed by their
unique owner agents. It is supposed that independent actions
can be executed in parallel. A plan π is called a solution of
Π if a sequential execution of the actions from π by their
respective owners transforms the initial state I to a subset of
the goal G. Let sol(Π) denote the set of all solutions of prob-
lem Π. We use π[i] to denote ai, that is, the action from the
plan at position i. Moreover π[i . . . j] where i ≤ j denotes
the plan subsequence 〈ai, . . . , aj〉.

The projection πS of a plan π = 〈a1, . . . , ak〉 is computed
from π by projecting each action ai to S and by subsequent
removal of empty projections. Formally we define

π
S
7−→ πS def

⇐⇒ πS = 〈aS1 , . . . , a
S
k〉 |

A
S
Π ,

where the restriction |A
S
Π creates a subsequence containing

only actions of AS
Π. Note that different plans can have the

same projection. The public plan projection πpub is defined

as π(Apub

Π
) and the plan projection πα to agent α is defined

as π(Pα). A plan is called public w.r.t. Π if ai ∈ A
pub
Π for all

i.

Extensible Plans

The following defines (α)-internally extensible plans which
are plans that can be transformed to a solution by inserting
only internal actions into it.

Definition 1. Let Π be MA-STRIPS problem and let π be
a plan public w.r.t. Π. We say that the public plan π is α-
internally extensible if

∃π′ ∈ sol(Πα) : π′ pub
7−→ π

1This condition can be weakened, but we stick to it as it simpli-
fies this paper.
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We say that the public plan π is internally extensible if

∃π′ ∈ sol(Π) : π′ pub
7−→ π

The following lemma states that a solution of problem Π
can be obtained composing partial α-internally extensible
plans of all the involved agents.

Lemma 1. Let Π be MA-STRIPS problem and let π be a
plan public w.r.t. Π. A plan π is α-internally extensible for
every agent α that owns some action from π if and only if π
is internally extensible.

Similarly to the Definition 1 the following defines a pub-
licly extensible plan which can be transformed to a solution
by inserting both public and internal actions into it.

Definition 2. Let Π be given. We say that a plan π is pub-
licly extensible if there exists a plan π′ which is internally
extensible and such that π is a subsequence of π′.

Plan Domains

The following defines a plan domainD which is a key struc-
ture used in our algorithms. A domain D is a set of plans
with operations defined as follows.

D ⊖ π = D \ {π}
D ⊕ 〈a, t〉 = {π ∈ D|π[t] = a}
D ⊖ 〈a, t〉 = D \ (D ⊕ 〈a, t〉)

Moreover let Dlmax denote the set of all plans of length lmax.
In our algorithms presented in the following sections we

suppose that we have a classical planner which computes a
solution of a given classical planning problem which is in
a given domain D, that is, that we have an effective proce-
dure that selects a solution from a given domain. We work
with plan domains defined as sets of plans to abstract from
a concrete implementation and to simplify presentation of
the algorithms in the following sections. A plan domain D
can be seen as an abstract data structure which supports the
above three operations and whose semantics is defined using
aforementioned sets of plans. Our effective implementation
of plan domains uses planning graphs and a SAT solver. We
encode the search for a plan in a planning graph as a SAT in-
stance and operations on domain D then add additional con-
ditions to the SAT instance so that the search is restricted to
D. The implementation is further described below.

OperationD⊖π simply removes π from the domain. Op-
erationD⊕〈a, t〉 restricts the domain so that it contains only
those plans which contain action a at position t. Finally, op-
erationD⊖〈a, t〉 does exactly the opposite, that is, it restricts
the domain so that it contains only those plans which do not
contain action a at position t.

Confirmation Scheme

In this section we present a multiagent planning algorithm
which effectively iterates over all plans in order to find in-
ternally extensible solution. This confirmation algorithm can
also be seen as a skeleton which is further elaborated in next
section. The confirmation algorithm provides a sound and
complete multiagent planning algorithm (see Theorem 2).

Algorithm 1: Multiagent planning algorithm with itera-
tive deepening.

input: multiagent planning problem Π
output: a solution π of Π when solution exists
Function MultiPlanIterative(Π) is

lmax ← 1
loop

π ← MultiPlan(Π, lmax)
if π 6= ∅ then

return π
end
lmax ← lmax + 1

end

end

Procedure MultiplanIterative from Algorithm 1 is
the main entry point of our algorithms, both in this and
the following sections. This procedure is initially executed
by one of the agents called initiator. It takes a problem
Π as the only argument and it iteratively calls procedure
MultiPlan(Π, lmax) to find a solution of Π of length lmax,
increasing lmax by one on a failure. In this way we ensure
completeness of our algorithm because we enumerate the
infinite set of all plans in a way that does not miss any so-
lution. To simplify the presentation, we restrict our research
only to those problems Π which actually have a solution.

Algorithm 2: MultiPlan(Π, lmax) in the confirmation
scheme. Method SinglePlan(Π,D) returns a plan from
domain D solving problem Π or ∅ if there is no such
plan. Constructor PlanDomain constructs a plan domain
with a given semantics. Method AskAllAgents(πpub)
asks all agents mentioned in the plan whether they con-
sider the public projection of this plan to be internally
extensible and returns OK if all agents reply YES.

input: problem Π and a maximum plan length lmax

output: a solution π of Π when solution exists
Function MultiPlan(Π, lmax) is
D ← new PlanDomain({π : |π| = lmax})
loop

π ← SinglePlan(Π,D)
if π = ∅ then

return ∅
end

reply ← AskAllAgents(πpub)
if reply = OK then

return π
end
D ← D ⊖ π

end

end

Algorithm 2 presents implementation of MultiPlan in
the confirmation algorithm. Operator PlanDomain con-
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structs a planning domain with semantics described by its
argument. We suppose that SinglePlan(Π,D) implements
a sound and complete classical planner which returns a
solution of Πα within a given domain D where α corre-
spond to the agent executing the task. Moreover we sup-
pose that SinglePlan always terminates and that it returns
∅ when there is no solution. Our effective implementation of
SinglePlan is described in local plan extraction section.

Initially, we create a domain that contains all the plans of
length lmax. Then we invoke SinglePlan to obtain a solu-
tion of Πα denoted as π. Afterwards, we ask all involved
agents whether or not the public projection πpub is inter-
nally extensible. To answer this question, each agent invokes
SinglePlan for a problem considering only actions from
πpub together with its internal actions while using a plan
domain to describe possible partial solutions. When the an-
swers from all of the agents are affirmative then π is returned
as a result. Otherwise π is excluded from domain D and
SinglePlan is called to compute a different solution.

The following states that the plan returned by the confir-
mation algorithm is internally extensible to a solution of Π
(soundness), and that the algorithm finds internally extensi-
ble solution when there is one (completeness). It is easy to
construct a solution of Π given an internally extensible plan.

Theorem 2. Algorithm MultiplanIterative (Alg. 1)
with confirmation procedure MultiPlan (Alg. 2) is sound
and complete.

Iterative Negotiation Scheme
A drawback of the confirmation scheme from the previous
section is that it requires an initiator agent to find a plan
which is internally extensible to a problem solution. It means
that the other agents, called participants, can insert only
their internal actions into the plan and this can be too lim-
iting. Our iterative negotiation algorithm from this section
tries to overcome this drawback by attempting to correct
a publicly extensible plan to a solution. Hence we distin-
guish the following cases depending on a result π returned
by SinglePlan.

CASE-I – π is an internally extensible plan – all partici-
pants can extend the plan adding internal actions only.

CASE-II – π is a publicly extensible plan – all partici-
pants can extend the plan but some can require another
public action to be performed prior to their action.

CASE-III – Otherwise – negotiation fails, the initiator
restricts the domain D and replans.

The confirmation algorithm handles only situations de-
scribed in CASE-I. Plans of CASE-II are handled as
CASE-III, that is, the search for an internally extensi-
ble plan continues in a restricted domain. The following
subsections describe improved handling of CASE-I and
CASE-II in the iterative negotiation algorithm.

Handling of Internally Extensible Plans

Handling of CASE-I in the iterative negotiation algorithm
is presented in Algorithm 3. One of the agents, called ini-
tiator, starts the negotiation. Other agents are called partici-

Algorithm 3: MultiPlan(Π, lmax) in iterative negoti-
ation scheme: Systematic search through all possible
plans with backtracking (confirming actions from the be-
ginning of the plan). Procedure AskAgent(α, π) queries
agent α how it rates the plan π. It returns CASE-I if it
is prefix of some internally extensible plan, otherwise re-
turns CASE-II if it is prefix of some publicly extensible
plan, otherwise it returns CASE-III.

input: problem Π and a maximum plan length lmax

output: a solution π of Π when it exists, ∅ otherwise
Function MultiPlan(Π, lmax) is
Dlmax ← new PlanDomain({π : |π| = lmax})

π ← SinglePlan(Π,Dlmax)

πX ← CorrectPlan(π, 1,Π,Dlmax)

return πX

end

input: plan π, index of first action that can be changed l,
problem Π and the domain D
output: a solution π of Π when it exists, ∅ otherwise
Function CorrectPlan(π, l,Π,D) is

repeat
α← OwnerOf(π[l])

reply ← AskAgent(α, (π[1 . . . l])pub)
switch reply do

case CASE-I
if |π| = l then

return π
end

πX←
CorrectPlan(π, l+1,Π,D⊕〈π[l], l〉)
if πX 6= ∅ then

return πX

end

end
case CASE-II

/* Do nothing for now,

will be handled by

Algorithm 4. */

end
otherwise (CASE-III)

/* Do nothing. Subplan

π[1 . . . l] is not prefix of

any solution. */

end

endsw
D ← D ⊖ 〈π[l], l〉
π ← SinglePlan(Π,D)

until π = ∅
return ∅

end
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Figure 1: Logistics problem. Two packages need to be trans-
ported as shown by dashed arrows. Each of four vehicles
can transport objects only between a pair of neighboring lo-
cations. In one analyzed variant, the TruckB is broken and
it thus requires be fixed using the RepairKit before it can
move anywhere.

pants. The initiator selects its local solution from the initial
domain Dlmax a tries to correct it to an internally extensible
solution of a given problem. Procedure CorrectPlan iter-
ates over the actions from π a tries to confirm the actions one
by one, by asking the action owner to confirm action posi-
tion. If the answer of AskAgent is CASE-I then it contin-
ues to query the next action. Otherwise the initiator remem-
bers that this action can not be performed at specified po-
sition (under assumption that previously confirmed actions
precede) and tries to find a different plan where this action
is not required, while the previous actions in the plan remain
the same. The following example illustrates Algorithm 3.

Example 1. Let us demonstrate our algorithms on a simple
logistics problem illustrated by Figure 1. They are two pack-
ages located at two airports. The goal is to transport them
to distant cities. In order to achieve this goal, it is necessary
to transport each package to the second airport by a plane
and then to load it onto the truck and move it to the target
city.

Let’s suppose that all the facts describing the location of
the packages are public and all other facts are internal. Let’s
also suppose that the agent AirplaneA decides to solve
this task and starts the planning process. In the first run of
planning process, it creates a plan that seems to solve the
problem. An example of such a plan follows:

1. load(AirplaneB, PackageB, AirportB)

2. unload(AirplaneB, PackageB, AirportA)

3. load(AirplaneA, PackageA, AirportA)

4. fly(AirplaneA, AirportA, AirportB)

5. unload(AirplaneA, PackageA, AirportB)

6. load(TruckA, PackageB, AirportA)

7. load(TruckB, PackageA, AirportB)

8. unload(TruckA, PackageB, CityA)

9. unload(TruckB, PackageA, CityB)

Now, the AirplaneA verifies that all the agents, that
are required to perform some action in the plan, can really
perform the requested action. Agent AirplaneA first asks
AirplaneB to load PackageB at AirportB at time 1.
This is directly possible and thus the AirplaneB replies

with CASE-I. AirplaneA then queries AirplaneBwith
first two actions. AirplaneB cannot perform the unload
action immediately after the load action, nevertheless it is
required to insert only one internal action fly to create a
valid plan that can be prefix of some solution. Therefore,
AirplaneB replies with CASE-I again.

Similarly, the negotiation continues action by action to
the end of the plan and then agent AirplaneA can confirm
that the plan is internally extensible.

Handling of Publicly Extensible Plans

It is a more complex problem to detect whether a plan is pub-
licly extensible and then to convert it into a internally exten-
sible plan. In this case, the initiator α creates a plan solving
Πα which misses some public actions required by some par-
ticipant to allow him to cooperate on this plan. When the par-
ticipant is queried with a plan containing such an action, it
replies with CASE-II as demonstrated by Example 2. Then
initiator asks him for a list of missing required public action.
These actions are inserted into the original plan by the initia-
tor and they have to be confirmed by owner agents. They can
contain actions that cannot be performed – then the initiator
asks the participant for some alternative plan that would al-
low him to perform required action. Additionally, the actions
returned by the participant can also contain actions owned
by another participant. These actions of another participant
need again to be verified.

In the CASE-II, the plan extension is searched in depth-
first manner and thus it can yield in infinite cycle in some
cases. Therefore, there has to be some limitation to stop
the deepening. It can be limited by the number of plan ex-
tensions ’◦reqActs◦’ or by the maximal length of π′ (e.g.
|π′| ≤ 2 · lmax).

Algorithm 4: If the participant marks the plan
as publicly extensible (CASE-II), the initiator
asks him for missing public actions using method
askRequiredActions(α). These actions are then
inserted into the current plan π.

case CASE-II
while (reqActs ← askRequiredActions(α)) 6= ∅
do

π′ ← π[1 . . . (l − 1)] ◦ reqActs ◦ π[l . . .]
D′ ← {π0 ∈
D| π0[1 . . . (l − 1)] ◦ reqActs ◦ π0[l . . .]}
πX←CorrectPlan(π′, l,Π,D′)

if πX 6= ∅ then
return πX

end

end

end

Example 2. Let’s extend the previous example by
TruckA’s internal state that it has broken engine and thus
it cannot perform action unload requiring internal ac-
tion move unless it is fixed. In order to perform the move
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action it has to fixEngine using the RepairKit. The
RepairKit is placed at CityB and thus it has to be trans-
ported by TruckB and a plane to the AirportA (location
where TruckA is placed). There is no reason why the ini-
tiator would plan to move the RepairKit2

When broken truck TruckA is asked to to fulfill action
unload at time 8, it creates plan containing following ac-
tions (apart from the action specified by the request):

8. load(TruckB, RepairKit, CityB)

9. unload(TruckB, RepairKit, AirportB)

10. load(AirplaneA, RepairKit, AirportB)

11. unload(AirplaneA, RepairKit, AirportA)

12. fixEngine(TruckA, RepairKit, AirportA)

13. move(TruckA, CityA)

14. unload(TruckA, PackageB, CityA)

First four actions are public actions that need to be per-
formed by other agents before the TruckA can fix its engine
and move to destination where it will unload the package.
Therefore, the reply is CASE-II with a subplan containing
these four public actions. Initiator will insert this subplan
into his plan and continues the negotiation.

Obviously, this approach can change publicly extensible
plan into an internally extensible plan only if it is possible
to insert required public actions immediately before the ac-
tion which requires them. In some domains, this does not
have to be true, and the publicly extensibly plan can re-
quire some public action to be inserted before some other
already planned action. Nevertheless, this problem does not
reduce the completeness of proposed algorithm, because the
required action will be planned later by the initiator once it
tries all other possible plans having that part of the plan fixed
(this situation is handled similarly by Algorithm 3).

From theory to practice

We have implemented the algorithms described in the previ-
ous sections taking advantage of several existing techniques
and systems. A overall scheme of the architecture of our
planner is sketched at Figure 2. An input problem Π de-
scribed in PDDL is translated into SAS using Translator
script which is a part of Fast Downward3 system. Our Multi-
SAS script then splits SAS representation of the problem Π
into agents’ projections Πα using user provided selection of
public facts P pub. Each agent can then compute its local
planning graph up to level lmax where lmax is always in-
creased by one on failure. Each planning graph represents
a set of plans including all solutions if any exists. We then
encode the search for a local solution in a planning graph
into a SAT instance and we use MiniSat4 solver to find a
solution to the problem Πα.

2Actions moving with the RepairKit are part of the domain
D

lmax (for some lmax) but let’s suppose that we have a planner that
prefers NOOPs to moving some object which is not required by the
goal. Nevertheless, initiator uses complete method and thus it will
come to the solution soon or later.

3http://www.fast-downward.org/
4http://minisat.se/
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Figure 2: Architecture of the planner.

It is crucial to use suitable representation of plan domain
D to allow effective implementation of all operators and
function used in our algorithms under reasonable memory
requirements. Direct listing of all the plans is obviously un-
feasible. We have chosen to use planning graphs represented
as SAT problems. In following sections we define multiagent
planning graphs and describe (i) how to encode the search
for a solution in a planning graph into a SAT instance and
(ii) how the SAT instance is altered so that it encodes the
search for a solution in a restricted domain. We conclude
with a discussion of possible algorithm improvements.

Agent Planning Graphs

Agent planning graphs (APGs) stem from the classical plan-
ning graphs. Building distributed planning graphs was pre-
viously studied with focus on distribution of the Graphplan
algorithm (Pellier 2010). Multiagent planning graphs were
also studied recently in its relaxed form (Torreño, Onaindia,
and Sapena 2012)[removed for review].

An APG is a directed, labeled and layered graph Gα =
(P ∪A,E) of one particular agent α for a local agent’s plan-
ning task. As in a classical planning graph, the nodes of the
graph represent propositions P and actions A. The arcs E
represent linkup of propositions and actions.

In more detail, an i-th proposition layer and action layer
will be denoted as Pi and Ai respectively. The layers alter-
nate, so that (P0, A0, P1, A1, . . . , An−1, Pn) and all layers
Pi ⊆ P and all layers Ai ⊆ A. The first proposition layer P0

contains nodes labeled by propositions of the agent’s projec-
tion of the initial state: P0 = I ∩ Pα.

Each action layer contains action nodes for all applica-
ble actions of the agent α in a state represented by the pre-
vious fact layer and external projections of other agents’
public actions reachable in the same layer Ai = {a|a ∈
Aα

Π, pre(a) ⊆ Pi}. In all successive fact layers, the nodes
copy the previous fact layer according to the frame axiom
and transforms the facts by actions in the previous action
layer: Pi = Pi−1 ∪ {p|p ∈ add(a), a ∈ Ai−1}.

Additionally, there is defined relation between pairs of ac-
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tions and pairs of facts called mutexes. It is constructed dur-
ing the creation of the planning graph using specific rules
described in (Ghallab, Nau, and Traverso 2004). Whenever
two actions or facts are in mutex, it means that they cannot
be achieved simultaneously.

In our implementation the APG is built until all the facts
of the goal are supported and there is no mutex between
them. Then we add layers as described by Algorithm 1.

Local Plan Extraction

Initial domain Dlmax for a Planning graph containing lmax

layers in SAT representation contains a variable for each:

• action at each PG layer (including the noop actions) indi-
cating whether the action is activated (i.e. part of the plan)

• fact at each PG layer indicating whether this atom is sup-
ported by some active action

Then it contains a formula for each:

• mutex, assuring that two mutexed actions must not be ac-
tivated at the same time

• precondition of each action to ensure that it will be true if
the action is activated

• fact, because it has to be supported by some active action
to be true

• fact of initial state, to set it to true

• fact of goal state to require it to be true in a solution

Operations on D are then defined as follows:

D ⊕ 〈a, l〉 – a variable representing action a at layer l is
required to be true (new formula added to the SAT repre-
sentation)

D ⊖ 〈a, l〉 – a variable representing action a at layer l is
required to be false (new formula added to the SAT repre-
sentation)

SinglePlan(Π,D) – a SAT solver is used to find a solution
to the problem Π

Moreover, it is necessary to define how participant agent
should handle a query from the initiator AskAgent(α, π).
As described in caption of Algorithm 3, this query asks par-
ticipant to assess the category the plan π – whether it is a
prefix of internally, or publicly extensible plan. The partici-
pant first tries whether the provided plan is internally exten-
sible, while it knows that the π[1...(|π| − 1)] is internally
extensible. Participant also stores information about inter-
nal actions that had to be inserted into this plan in order to
mark it as internally extensible. It first match this subplan
together with this information to its own planning graph Gα.
Then, in first iteration, it tries whether the action π[|π|] can
directly follow previous actions by forcing this action to be
used at appropriate layer. If it is not possible it tries this ac-
tion at another layer allowing only internal action to be in-
serted in created gap. This continues until some limit (lmax).
If this process did not succeed then we know that this plan is
not internally extensible. Similar procedure is used to detect
publicly extensible plans.

Improvements

The described algorithm and its implementation can be im-
proved in several ways. We use planning graph to create ini-
tial set of plans Dlmax . It can contain several actions at one
layer, that are independent and can be executed in parallel.
The initiator can query these actions in parallel. If all agents
reply CASE-I then the initiator can continue with next ac-
tion. If some agent replies CASE-III, the whole layer of
action is forbidden in domainD and new plan has to be gen-
erated. If some agents reply CASE-II, their required action
can be added into the plan in any order. It is also possible
to only add actions required by one agent and continue with
algorithm, because once it reaches the queried action again
other agents will probably reply CASE-III again and then
other required actions will be injected into the plan.

A participant replying with CASE-III can also take the
initiative and continue the negotiation instead of the original
initiator. This can be easily implemented in the case when
only one agent is queried at a time. In the case of parallel
queries, it is necessary to handle commitments of agents to
different initiators to not promise excluding actions.

Experiments

For our experiments, we have used the Tool Problem
(Tožička et al. 2014) that allows us to smoothly change an
amount of public and internal actions between two extreme
cases: (i) there is no internal action and (ii) there are as
many internal actions as possible (implied by the equal sign
in the definition of P pub). Case (i) allows the initiator to
construct a correct plan immediately without any communi-
cation, while case (ii) might require some negotiation. An
advantage of case (ii) is, however, that initiator’s plan is not
so complex and contains less actions.

We have focused on the following three criteria: (1) num-
ber of SAT solver invocations by an initiator and partic-
ipants, (2) the complexity of communication between the
initiator and the participants (number of positive and nega-
tive responses), and (3) time complexity. We have measured
these criteria as a function of the publicness of a problem,
where the publicness is a number between 0 and 100 de-

fined as # public actions
# all actions

∗ 100. All our experiments have been
carried out on CPU Intel Core-Duo 1.4GHz.

Tool Problem

In the Tool Problem, the goal requires that each of N agents
performs its doGoal action. Nevertheless, in order to per-
form this action, agent need to useTool first. Then, there
is an agent that provides the tools (handTool). This agent
will be in the role of initiator. Initial state is that none of the
agents has its tool and initiator has all of them. Goal state is
that all tools have been used by actions doGoal.

In this problem, minimal publicness is 66.6% – all par-
ticipants’ actions doGoal have to be public because facts
contained in goal are public and these actions have them as
their effects; Initiator’s actions handTool also have to be
public because some of their effects are required by some
other agents’ actions; and actions useTool are internal.
The maximal possible publicness is 100% when all actions
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are public. In our experiments we continuously change the
visibility of useTool actions and thus the publicness of the
whole problem.

Results
Let us present results for the Tool Problem where N = 5.
Each publicness settings was run 20 times. Another exper-
iments for N = 3 and 4 yield similar results. All results
are presented as a function of publicness of the problem (X-
axis).

SAT Solver Invocations Figure 3 shows that with the in-
creasing publicness the number of initiator’s and partici-
pants’ SAT Solver invocations decrease. The reason for it is
that the more actions are available to the initiator the easier it
is to find a local plan that all participants mark as internally
extensible. In an extreme case, when all actions are public,
the initiator performs only one SAT solver invocations and
finds an internally extensible plan immediately.
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Figure 3: Average initiator’s and participants’ SAT Solver
invocations depending on the problem publicness.

Number of CASE-I and CASE-III Replies The num-
ber of participants’ CASE-I and CASE-III replies de-
pending on the problem publicness is shown in Figure 4.
It can be seen that in case of the minimal publicness (66%),
the initiator creates many plans that participants reply with
CASE-III. Note that the number of CASE-I replies first
increases and then decreases with growing publicness. That
is caused by the increase of relative number of CASE-I
replies because a plan for one agent (whose actions are pub-
lic) is correct, while the whole number of generated plans
does not decrease significantly.

Time Complexity An average time of finding the solution
depending on the amount of publicness is shown in Figure 5.
Note that in the case of publicness of 66%, less time is re-
quired than in the case of publicness of 73%, although there
are more SAT solver invocations in total. That is because the
SAT problem is more constrained and it often does not have
any solution, which can be often proved very easily by the
SAT solver.
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Figure 4: Average CASE-I and CASE-III replies depend-
ing on the problem publicness.

Figure 5: Amount of time required to solve the problem de-
pending on the problem publicness.

Final remarks
The planning technique we proposed is carried out by a
group of cooperative planning agents. Initially, each agent
awaits a relevant part of a deterministic planning domain
and a problem. After receiving the inputs, the agents firstly
prepare their own local planning graphs based on the parts
of the problem they have. Secondly, the agents use their in-
dividual SAT solvers to extract a local solution from their
planning graphs. And finally, they negotiate actions from
other agents to help them and not to interfere with the other
agents by additional constraining of the SAT solving pro-
cesses, forming a negotiation loop. If all the agents find a
local plan and the plans provide all the requested goals with-
out any conflicts, the planning process ends. Otherwise, the
negotiation process continues until a solution is found.
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