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ABSTRACT

Firefly Algorithm (FA), introduced in 2008 by X. S. Yang, belongs with the nature-inspired
algorithms. It is a meta-heuristic, based on the firefly bugs’ behaviour, including the light emis-
sion, light absorption and the mutual attraction, which was developed to solve the continuous
optimization problems. This thesis describes Firefly Algorithm and proposes a possible way it
can be adjusted to solve the class of discrete problems Quadratic Assignment Problem (QAP),
where the solutions consist of the permutation of the integers. Explained is the Firefly Algorithm’s
discretization, which consists of constructing a suitable conversion of the continuous functions
as are attractiveness, distance and movement, into new discrete functions. New Discrete Firefly
Algorithm (DFA) is implemented into the framework SEAGE, where the DFA is examined and
experimentally tested on 11 different QAP problems chosen from the public QAPLIB Library.
Results of these experiments are analysed and described in this work.

Keywords: Firefly Algorithm, Meta-heuristics, Optimization

ABSTRAKT

Firefly Algoritmus (FA), který v roce 2008 zveřejnil jeho autor X. S. Yang, patří mezi al-
goritmy inspirované přírodou. Jedná se o meta-heuristiku založenou na chování svetlušek (vzá-
jemná atrakce za pomoci světelného záření) vyvinutou pro spojité optimalizační problémy. Tato
bakalářská práce popisuje Firefly Algoritmus a možný způsob návrhu, jak jej lze přizpůsobit
problémům třídy Quadratic Assignment Problem (QAP), kde řešením je permutace celočíselných
hodnot. Popisuje diskretizaci Firefly Algoritmu, jenž spočívá v konstrukci vhodného převodu
spojitých funkcí jako jsou atraktivita, distance a pohyb na nové diskrétní funkce. Takto nově
vzniklý Diskrétní Firefly Algoritmus (DFA) je implementován do projektu SEAGE, kde je jeho
funkcionalita experimentálně ověřena na 11 různých QAP problémech z veřejné QAPLIB kni-
hovny. Výsledky jsou analyzované a rovněž uvedené v této práci.

Klíčová Slova: Firefly Algorithm, Metaheuristika, Optimalizace
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Chapter 1

Introduction

Over the last 20 years new meta-heuristic algorithm has been introduced almost every year [17].

The nature-inspired ones have become very interesting and distinguished. It is reasonable that

people began to explore how nature solves the problems, since nature has evolved for billions of

years, and has found almost perfect solution to any problem it has encountered. Erroneous or lesser

alternations have already become extinct or were not favoured in a natural selection. So why not

be inspired by nature [15]? Such commonly known algorithms are e.g., Evolutionary Algorithms,

which are inspired by biological evolution itself and use crossover and mutation for improving

solutions or Neural Network 1, based on the biological neural network system in animals’ brains.

These algorithms are usually proposed for the continuous optimization problems (see section 1.1)

that can be solved very effectively, as our world is continuous. In case we want to apply an algo-

rithm to discrete problems, like the Travelling Salesman Problem (TSP) or Quadratic Assignment

Problem (QAP), we need to adjust an algorithm for that purpose, which is called discretization.

For some discretizations it would suffice to round real numbers up to a certain decimal fraction

or replace them by the integers, but sometimes solution can be represented as permutation of the

integers, as it is in TSP and QAP problems, or even in a more complex way. In these classes of

problems, we need to adapt our continuous meta-heuristics to be more sophisticated.

1Neural Networks were inspired by nature, but is not a meta-heuristic

1



2 Chapter 1 Introduction

1.1 Optimization

There are three basic elements of the optimization problems:

• an objective function which we want to minimize or maximize

• a set of unknowns or variable which affect the value of the objective function

• a set of constraints that allow the unknown to take on certain value but exclude others.

The optimization problem is described informally as: Find values of the variables that minimize

or maximize the objective function while satisfying the constraints.

Formal definition is:

given a function f : A→ R A⊆ Rn

minimize f (x), x = (x1,x2, . . . ,xn)
T x ∈ A

subject to ci(x) = 0, i = 1,2, . . . ,m′ i,m′ ∈ N

ci(x)≥ 0, i = m′+1, . . . ,m i,m ∈ N

where:

• f (x) is the objective function,

• x is the column vector of the n independent variables,

• ci(x) is the set of constraint functions.

Constraint equations of the form ci(x) = 0 are termned equality constraints, and those of the

form ci(x)≥ 0 are inequality constraints. Taken together, f (x) and ci(x) are known as the problem

functions [8].

1.2 Seage

Project SEAGE2 [9] is a dissertation work created by Ing. Richard Málek at Czech Technical

University. This project is an optimization framework written in the Java programming language,
2SEAGE is an acronym of SEarch AGEnts



1.3 Goals of This Work 3

that uses hyper-heuristic approach for solving the optimization problems. Hyper-heuristic is a

technique, under which heuristics compete against each other in order to be selected. In other

words, hyper-heuristic is “heuristic, which chooses heuristics". Hyper-heuristic does not try to

find the best solution for the problem, as it endeavours meta-heuristic, yet it gives us as a solution

some heuristic, or combination of several heuristics, that could compute the best solution. Hyper-

heuristic’s other motivation is robustness, rather than finding an optimal solution [4].

SEAGE contains implementations of some nature-inspired meta-heuristic algorithms and common

NP complex discrete computational problems. It enables to solve the problem instances by any of

the implemented meta-heuristic algorithms, as well as their combinations running simultaneously,

which may lead to even better results.

1.3 Goals of This Work

In 2008, Xin-She Yang has introduced a new meta-heuristics algorithm Firefly Algorithm, that

is inspired by firefly’s social behaviour. In the basic form, this algorithm is designed to solve

primarily continuous problems. Goal of this work is to implement a discretization of this algorithm,

or in other words, to adjust this algorithm to solve discrete problems, particularly the Quadratic

Assignment Problems (QAP). Discretization has to be done in such a way, that the new Discrete

Firefly Algorithm (DFA) would solve the QAP effectively. Both, the QAP and the DFA will be

implemented into the SEAGE framework, and afterwards, DFA will be experimentally tested on

11 QAP instances in the SEAGE’s EXPERIMENTATOR environment. Experiments will be set to

observe algorithms strengths and weaknesses, as well as to find algorithm’s different behaviours

dependent on parameters’ settings.
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Chapter 2

Firefly Algorithm

2.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO), introduced by Kennedy and Eberhart (1995) [6], is an opti-

mization method based on social behaviours. This method does not calculate a gradient of an objec-

tive function 1 f (), hence the objective function is not required to be differentiable. PSO methods

consist of a collection (called a swarm) of individual entities (known as particles). Each particle

represents a candidate solution and abides simple mathematical formulae and rules, observed in

behaviour of the bird flock [6]. Every ith particle knows: a) its own position xi = (xi
1, . . . ,x

i
n), b) its

own direction and velocity 2, usually represented as a vector vi = (vi
1, . . . ,v

i
n), c) the position of

its own best currently reached solution pi = (pi
1, . . . , pi

n) and d) the position of the best currently

known solution of the whole swarm g = (g1, . . . ,gn)
3, where n is the space dimension .

At the initialization step, all the particles p1, . . . ,pm, where m∈N is the number of the particles,

1objective function, usually f : Rn → R — also called cost function — is a function we want to minimize (or

maximize, if desired). Such minimum or maximum is then called an optimum
2direction and velocity can be represented in one vector, where its direction is the vector’s direction, and velocity

is the vector’s length
3this is the only shared information among all the particles

5



6 Chapter 2 Firefly Algorithm

are uniformly scattered over the search space and their velocities are set either to zero or to a small

random value. Each particle’s best current solution pi is set to their current position xi, and g is

set to the position of the best particle. Best particle is such particle p j, that for all i ∈ {1, . . . ,m} :

f (p j) ≤ f (pi) in case of the minimalization [6]. Next in a loop, there is calculated new velocity

vector vi of each particle in the swarm using the formula [10]:

vi← ωvi +φprp(pi−xi)+φgrg(g−xi), (2.1)

where rp, rg ∈U [0,1) and ω ∈ R are user-defined constants, called inertia weights and φp,φg are

user-defined behavioural constants called acceleration coefficients. All the other variables were

defined earlier. After calculating every particle’s new velocity vector vi, we need to compute their

new positions xi — to make their step. New position for each particle is calculated simply by the

formula [10]:

xi← xi +vi. (2.2)

Particles’ best known positions pi and the global best known position (g) are updated in the last

step of this loop. If the particle’s newly gained solution is better than its current best solution or

f (xi)< f (pi) in a case of minimalization, then pi← xi. Find a current best particle (with the max-

imum of f (x)), let say it is b and then using rule: if f (g)< f (b) then g← b we update the global

solution. Every particle gets closer towards the combination of its best currently known solution,

which is called cognitive component and is modelled by vector φp, and best known solution, called

social component, modelled by φg as it is shown in Figure 2.1.
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Figure 2.1 Field of the particle’s possible new positions for the next iteration.

2.2 Firefly Algorithm

2.2.1 Inspiration

Fireflies, belong with family of Lampyridae, are small winged beetles capable of producing a cold

light 4 flashes in order to attract mates [1]. They are believed to have a capacitor-like mechanism,

that slowly charges until the certain threshold is reached, at which they release the energy in the

form of light, after which the cycle repeats [12].

Firefly algorithm, developed by Xin-She Yang (2008), is inspired by the light attenuation over

the distance and fireflies’ mutual attraction, rather than by the phenomenon of the fireflies’ light

flashing. Algorithm considers what each firefly observes at the point of its position, when trying to

move to a greater light-source, than is his own.

4cold light is a light producing little or no heat
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2.2.2 Algorithm

The Firefly Algorithm is one of the newest meta-heuristics. Therefore there have been written

fairly few articles concerning it. This thesis will mainly draw information from [13, 15, 16]. As it

is described in above listed articles, Firefly algorithm idealizes some of the characteristics of the

firefly behaviour. They follow three rules: a) all the fireflies are unisex, b) each firefly is attracted

only to the fireflies, that are brighter than itself; strength of the attractiveness is proportional to the

firefly’s brightness, which attenuates over the distance; the brightest firefly moves randomly and,

c) brightness of every firefly determines its quality of solution; in most of the cases, it can be pro-

portional to the objective function. Using these three rules, pseudo-code of the Firefly Algorithm

may look as follows:

Algorithm 1: Basic Firefly Algorithm Pseudo-code
input : f (x), x = (x1,x2, · · · ,xn) ; // objective function

m, I0,γ,α ; // user-defined constants
output: xmin ; // position of minimum in objective function

for i← 1 to m do
xi← Initial_Solution();

end
while termination requirements are not met do

min← arg min
i∈{1,...,m}

( f (xi));

for i← 1 to m do
for j← 1 to m do

if f (xi)< f (x j) then // move xi towards x j

di, j←Distance(xi,x j);
β ←Attractiveness(I0,γ,di, j);
xi← (1−β )xi +βx j +α(Random()− 1

2); // movement
end

end
end
xmin← xmin +α(Random()− 1

2) ; // best firefly moves randomly
end

In the above algorithm, m is the number of the fireflies, I0 is the light intensity at the source,
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γ is the absorption coefficient and α is the size of the random step. All these parameters will be

explained further in detail.

2.2.3 Attractiveness, Distance and Movement

Attractiveness

Suppose it is a night with absolute darkness, where the only visible light is the light produced

by fireflies. The light intensity of each firefly is proportional to the quality of the solution, it is

currently located at. In order to improve own solution, the firefly needs to advance towards the

fireflies that have brighter light emission than is his own. Each firefly observes decreased light

intensity, than the one fireflies actually emit, due to the air absorption over the distance. Light

intensity reduction abides the law:

I(I0,d)←
I0

d2 , (2.3)

where I0 is the light intensity at zero distances, and d is the observer’s distance from the source.

Attenuation through the air absorption coefficient follows this rule:

A(I0,γ,d)← I0e−γd, (2.4)

where γ is the absorption coefficient. By combining both equations, resulted attractiveness func-

tion can be well approximated by the formula5:

Attractiveness(I0,γ,d)← I0e−γd2
, (2.5)

For the faster computation, or in cases intensity function needs to be decreased in a slightly slower

rate, it can be well emulated by function:

Attractiveness(I0,γ,d)←
I0

1+ γd2 . (2.6)

5this formula leaves us out of the concerns for d = 0, for which the domain of definition of the Formula 2.3 is not

defined
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Distance

The distance function Distance : X×X→R, where X is the set of all solutions, supplies informa-

tion of the diversity between two given solutions. In case solution space X=Rn, distance function

can be following:

di, j = Distance(xi,x j) =

√
n

∑
k=1

(xi
k− x j

k)
2. (2.7)

For the strings, distance function may be represented as Hamming’s distance of given strings; for

the more complex structures, the distance function should provide information about the amount

of different entities in the structures.

Movement

The movement itself consists of two elements: approaching the better local solutions and the

random step6. Formula for an attracting firefly xi towards a firefly x j is the following:

xi← xi +Attractiveness(I0,γ ,Distance(xi,x j)) · (x j−xi)+α · (Random()− 1
2
) (2.8a)

← xi +Attractiveness(I0,γ,di, j) · (x j−xi)+α · (Random()− 1
2
) (2.8b)

← xi + I0e−γd2
i, j · (x j−xi)+α · (Random()− 1

2
) (2.8c)

← xi +β · (x j−xi)+α · (Random()− 1
2
) (2.8d)

← (1−β ) ·xi +β ·x j +α · (Random()− 1
2
), (2.8e)

where γ ∈ [0,∞) is the user-defined constant absorption coefficient and I0 ∈ [0,∞) is the light

intensity at the source; I0 may be the value of the objective function (I0 = f (xi)), then we have to

6approaching the better local solution is exploitation and random step is exploration of the searching space. We

want the exploration-exploitation to keep in a balance for the most efficient search
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make sure that ∀x ∈ X : f (x) ≥ 0, or usually in practice is set by user to a constant, e.g. I0 = 1.

The α is the user-defined value that affects the maximal random step. The function Random() —

in these equations — generates a uniformly distributed vector of [0,1)n.

By examining Eq. (2.8) one can observe, that parameters α and β influence the step of the

firefly in following way: β determines the step-size towards the better solution and α determines

the maximum radius of the random step.

For example, assume we want to compute the probabilistic distribution of the firefly’s posi-

tion for the next iteration, where the firefly has three rivals with a better solution than is its own.

Progress of a such computation illustrates Fig. 2.2. In Fig. 2.2(a) is shown a prior distribution of

the fireflies, where the black dot is the computed firefly, and the red dots are the fireflies with the

better objective values than the objective value of the computed firefly. In Fig. 2.2(b) are done steps

β1 and α1 towards the left firefly, where the grey circle marks possible distribution of the firefly’s

position after these two steps. Since the Random() function is uniformly distributed, our circle7 is

uniformly distributed. In (c) the firefly’s next step β2 is shown — the whole probability distribution

shifts according to this β2. After executing another α2 step, which is again a uniform distribution,

resulting distribution becomes a triangular distribution [14], having peaked at the centre, as it is

depicted in (d), and fading linearly away with growing distance from the centre. Triangular dis-

tribution’s radius is α1 +α2 = α +α = 2α . Using the same steps and rules we obtain (e) and (f).

The more αs we add together, the more resulting distribution will resemble the Gaussian distribu-

tion [14]. All the α steps are alike for the length parts, whereas lengths of β steps’ are proportional

to the distance between given fireflies.

7the colour intensity indicates the probability at that point
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(a) steps:no step (b) steps:β1,α1

(c) steps:β1,α1,β2 (d) steps:β1,α1,β2,α2

(e) steps:β1,α1,β2,α2,β3 (f) steps:β1,α1,β2,α2,β3,α3

Figure 2.2 Computation process of the probabilistic distribution of the firefly’s position
for the next iteration
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2.2.4 Firefly Algorithm’s Special Extreme Cases

There are two special cases in the Firefly Algorithm. The two exceptions are in a relation to the

absorption coefficient γ = 0 and γ = ∞ [15].

• if γ = 0, then β = I0e−0·d2
= I0; in our story of the fireflies it means that air among fireflies is

absolutely clear with no light dispersion, hence each firefly can clearly see another fireflies

as bright as they emit the light at any distance. Here β is always the largest it could possibly

be, therefore, fireflies attempt to advance towards other fireflies with the largest possible

steps. The exploration-exploitation, in this case, is out of the balance, because exploitation

is maximal and exploration normal.

• if γ = ∞, then β = I0e−∞·d2
= 0; in the story this would mean, that fireflies are surrounded

with very thick fog and could not see any of the other fireflies. The only movement fireflies

would be doing is the α-steps, which are random steps. Here the exploration-exploitation is

out of the balance as well, as fireflies would do only the exploration, with no exploitation the

search space.

The most efficient searching is when the exploitation-exploration is in balance, or first to emphasize

the exploration, and then the exploitation. Therefore the best when γ is in a range [0,∞).
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Chapter 3

Quadratic Assignment Problem

3.1 Problem Statement

The Quadratic Assignment Problem, introduced by Koopmans and Beckmann in 1957 as a math-

ematical model for the location of indivisible economic activities [3], is one of the basic com-

putational problems in computer science with complexity strong NP -hard [11]. For the better

comprehension of the problem, it is often simplified as follows: for the given n facilities and n lo-

cations, with the given flows between all the pair of the facilities and the given distances between

all the pairs of the locations, find an assignment of each facility to the unique location, such that

the total cost, computed as the sum of distances times corresponding flows, is minimum. Mathe-

matical formulation of the problem is as follows: we are given two n× n matrices A = (ai j) and

B = (bi j), where usually ai j,bi j > 0, and the task is to find:

min
π∈Sn

n

∑
i=1

n

∑
j=1

ai jbπ(i)π( j), (3.1)

15



16 Chapter 3 Quadratic Assignment Problem

where Sn is set of all possible permutations of (1,2, · · · ,n). Sometimes there is an accessory n×n

matrix C = (ci j), which is added to the latter equation. Problem formula then becomes:

min
π∈Sn

n

∑
i=1

n

∑
j=1

ai jbπ(i)π( j)+
n

∑
i=1

ciπ( j). (3.2)

There are many different interpretations for the matrices, one of which is:

• ai j represents the flow from the facility i to the facility j,

• bi j represents the distance from the location i to the location j,

• ci j represents the cost of the placing facility i to the location j [3].

Applications of the QAP in real life can and have been used to solve problems as are: backboard

wiring, scheduling, process communication, design typewriter keyboard, other ergonomic designs,

scheduling parallel production lines, turbine runner problem, etc. [3, 7]

3.2 Methods of Solving the Problem

There were three methods developed for solving QAP problem exactly, that finds an optimal solu-

tion. These methods are: dynamic programming, cutting plane techniques, and branch and bound

procedure. The most efficient appears to be the branch and bound procedure, although for the

problems n > 30 these methods remain intractable.

Another approach to solve QAP is using heuristic methods. A heuristic approach does not

guarantee finding an optimal solution, but in a relatively short time can find solutions very close to

the optimum. The heuristic methods that are mainly used are: Local-Search, Simulated Anneal-

ing, Tabu Search, Genetic Algorithm, Greedy Randomized Adaptive Search Procedure (GRASP).

Authors in [7] assert, that “Drezner [5] designed a new GA with a problem-specific crossover rule

and a tabu search . . . . This new genetic algorithm is currently one of the best heuristics to solve

QAPs.”.



Chapter 4

Firefly Algorithm Discretization for QAP

4.1 What Firefly Algorithm Needs?

Alg. 1 shows us that in order to execute Firefly Algorithm we need to implement functions Ini-

tial_Solution() and Distance(xi,x j) in a way how it is represented in QAP. We also need to redefine

the step movements of the fireflies, and the Attract function, as our search space X is not Rn, as

it was assumed in the pseudo-code, but Sn, the all possible permutations of (1,2, · · · ,n). Thus the

line

xi← (1−β )xi +βx j +α(Random()− 1
2
); (4.1)

will be replaced by

xi← Attract(xi,x j,α ,β ); . (4.2)

In order to define these function for the QAP, we need to represent solutions as the permutations

and operate with them accordingly. Any operation with permutations must result in another per-

mutation. Following sections describe the way each function is implemented in the project SEAGE.

17
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4.1.1 Initial Fireflies

In the basic form of the Firefly Algorithm, as X. S. Yang describes it, the initial solutions/fireflies

are scattered over the search space in a uniform distribution. As our search space is Sn, the set of

permutations, we need to produce m random permutations of (1,2, · · · ,n) as the initial fireflies.

It is worth considering whether using a greedy method for solution initialization would improve

the performance of the algorithm. By putting one relatively good solution among the random

solutions, would cause the random solutions immediately to advance towards the better solution.

This would probably contribute to find the local optima faster, but not for better exploration of the

search space. Though this could be the future investigation, I have not used the greedy initialization

in my implementation.

4.2 Distance Function

Basically, here are two possible ways how to measure the distance between two permutations: (a)

Hamming’s distance and (b) the number of the required swaps of the first solution in order to get

the second one.

Let’s examine this example. Consider permutations π1,π2,π3 ∈ Sn:

π1 = [1 2 3 4 5 6], (4.3)

π2 = [1 2 4 3 6 5], (4.4)

π3 = [1 2 4 5 6 3]. (4.5)

The Hamming’s distance between two permutations is the number of non-corresponding elements

in the sequence. Therefore, HammingDistance(π1,π2) is 4 (only the first two positions have the

same elements). The Swap distance is the number of minimal required swaps of one permutation

in order to obtain the other one. SwapDistance(π1,π2) is thereby, 2 (in the π2 we swap elements:
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4 with 3 and then 5 with 6). HammingDistance(π1,π3) is again 4, but SwapDistance(π1,π3) is

now 4. We need such measurement of the distances, so that the closer permutations/solutions are

to one another, the smaller difference of their objective functions is produced. In our case, the

objective function is computed by the formula Eq. 3.1, respectively Eq. 3.2, thus, it is obvious,

that the difference in the results of the objective function of two permutations will decrease with

smaller Hamming’s distance, not the Swap distance. Following reason can arise: if we compare

results of the objective function for π1 with π2 and then π1 with π3, we will observe, that they have

in common nothing but first two elements, so objective function of all of them will contain the

product of 1st and 2nd row and column of the matrices, according to Eq. 3.1 resp. Eq. 3.2. The rest

of the rows and the columns in π1,π2 and π1,π3 will be always different, so π2 and π3 should be

equally distant from the π1, which is manifested by Hamming’s distance.

4.3 Attraction

Attraction has to be implemented and interpreted for the QAP in the same way, as it is intended for

the continuous Firefly Algorithm. To calculate next position of a certain firefly in the continuous

Firefly Algorithm, we can break up an attraction step into to sub-steps: β -step and α-step. We can

take the liberty of doing this, since we know that the result will not change. So the

xi← (1−β )xi +βx j +α(Random()− 1
2
) (4.6)

now becomes

xi← (1−β )xi +βx j, (4.7)

xi← xi +α(Random()− 1
2
). (4.8)

Note that the order of the steps α and β is not interchangeable. The β -step must always be

computed first and afterwards the α-step. If it was the other way round, the α-step could move
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firefly closer to or farther from the compared firefly, which would result in different β parameters

in the β -step equation.

4.3.1 β -step

In the Fig. 2.2 can be seen that the β -step brings the iterated firefly always closer to another firefly.

In other words, after applying a β -step on a firefly towards the other firefly, their distance is always

decreased, and the decrement is proportional to their former distance. Since we use Hamming’s

distance as our distance function, it means that in order for the one permutation to get closer to

the another permutation, the amount of their common elements have to increase. In the β -step

process, first of all we have to extract whatever it is that both permutations have in common, or

that is definitely in a resulting permutation. For example, we want the π1 = [4 9 3 7 6 8 2 1 5]

attract to π2 = [4 1 3 2 6 5 9 7 8], the resulting π1→2 after the first step would look following:

π1 = [4 9 3 7 6 8 2 1 5], (4.9)
π2 = [4 1 3 2 6 5 9 7 8], (4.10)

π1→2 = [4 _ 3 _ 6 _ _ _ _]. (4.11)

Secondly, we fill in the gaps in π1→2 regarding to permutations former distance. It can be

achieved as following: with the probability β = 1
1+γ·dπ1,π2

, where dπ1,π2 =HammingDistance(π1,π2)

we insert into π1→2 an element from π2, otherwise retain an element from π1. While doing this,

we need to watch not to create duplicate elements in the resulting permutation. Therefore, if the

element, that is about to be inserted from π2 or π1 have been used previously, we skip filling in this

gap and proceed to the filling of the next one. If after going through all the gaps in this manner,

there are still left empty gaps in the result, we fill them randomly with unused elements.

In our example, in order to continue, we need compute the β probability. Let us say γ = 0.1, then

β = 1
1+γd1,2

= 1
1+0.1·62 =

1
4.6 ≈ 0.217391304. It is also important to fill in the gaps in random order,

otherwise the beginnings would be always filled, and in the ends there would be many conflicts
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(meaning that both elements have already been used), hence a retention of empty gaps. The filling

process could be as follows:

π1 = [4 9 3 7 6 8 2 1 5], (4.12)
π2 = [4 1 3 2 6 5 9 7 8], (4.13)

starting: π1→2 = [4 _ 3 _ 6 _ _ _ _], (4.14)
Filling 6th position: π1→2 = [4 _ 3 _ 6 8 _ _ _], (4.15)
Filling 2nd position: π1→2 = [4 1 3 _ 6 8 _ _ _], (4.16)
Filling 9th position: π1→2 = [4 1 3 _ 6 8 _ _ 5], (4.17)
Filling 4th position: π1→2 = [4 1 3 7 6 8 _ _ 5], (4.18)
Filling 8th position: π1→2 = [4 1 3 7 6 8 _ _ 5](stays empty, since 1 and 7 are used), (4.19)
Filling 7th position: π1→2 = [4 1 3 7 6 8 2 _ 5]. (4.20)

The last step is to fill the rest with unused elements. In our example only the number 9 has

not been used, so the π1→2 = [4 1 3 7 6 8 2 9 5]. So the HammingDistance(π1,π2) = 6, and

HammingDistance(π1→2,π2) = 5, so π1→2 has approached towards π2 of one distance unit closer.

4.3.2 α-step

The α-step is much simpler than the β -step. It should allow us to shift the permutation into one of

the neighbouring permutations. The smallest distance of two neighbouring permutations involves

one swapping of two elements, therefore all the neighbours are distant from iterated firefly always

by 2 distance units. There are two ways how to apply the α-step: either to make α·Random()

many swaps of randomly chosen two elements, or to choose α ·Random() many elements, and

shuffle their positions. The first option is easier to implement, but results are not as abundant as

the second one. Reason for this is following. If we make two consequent swaps, the distance from

the original permutation can increase up to 4, for three swaps it is up to 6, etc. Whereas the second

option allows us to move odd distance units as well, therefore I have picked the second option.

Since α represents a maximal allowed step for the permutation, that consists of n elements, to
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make, we need α to be from the set {1, . . . ,n}. Then α = 1 means no step is made 1 and α = n

means to shuffle all the elements in the permutation. To clarify, the Hamming Distance π from the

πnew, that was created from π by α-step, is always ≤ α .

1choosing 1 element’s position to be shuffled in a permutation does not change permutation at all
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Experiments

5.1 Arrangement

There were made tens of different experiments, several of which were chosen into this paper to

illustrate efficiencies and abilities of the Discrete Firefly Algorithm designed for the QAP. Config-

uration of the DFA simulation consists in setting: of the population size m, of the number of the

iterations iter, of the absorption coefficient γ and of the time step timeStep. Since experiments are

not to be compared among one another in the time domain, type of the processor, the memory size

and other technical components are irrelevant. All the experiments were made on 11 QAP prob-

lems: chr12a, tai12a, esc16h, nug18, had20, chr20a, chr25a, tai25b, bur26a, tho30 and esc32g,

chosen from the QAPLIB at [2], and were executed using built-in EXPERIMENTER in the frame-

work SEAGE. EXPERIMENTER environment enables user to execute comfortably experiments by

choosing what algorithms are to be ran upon what problems. User also has to set ranges in which

algorithm’s parameters are to be chosen, number of iterations and number of simulations. EX-

PERIMENTER will run everything automatically and results will be stored in the generated XML

files.

23
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5.2 Experiments’ Description

5.2.1 Experiment I

In this experiment, there were launched 100 Firefly Algorithm simulations per problem, and each

simulation consisted of the population size m = 100 and iter = 100 iterations. The parameters γ

and timeStep were chosen randomly in the ranges γ ∈ [0.0;1.0] and timeStep ∈ [0.1,2.0]. This

gives us the survey of what configuration (γ and timeStep) has best results for each QAP problem.

5.2.2 Experiment II

This experiment consisted of: 10 Firefly Algorithm simulations per each problem with the iter =

500 iterations and the population size m = 500. The parameters γ and timeStep were chosen

randomly in the range γ ∈ [0.0;1.0] and timeStep ∈ [0.1,2.0]. This experiment is to be compared

with the results of the Experiment I, and should provide us an information, whether and how much,

the decrease of the amount of the simulations together with the increasing the population size and

iterations, would make an improvement.

5.2.3 Experiment III

Experiment setting was: 100 Firefly Algorithm simulations per problem with iter = 500 iterations

and population size m = 500. Parameters γ and timeStep were chosen randomly in the range

γ ∈ [0.0;1.0] and timeStep ∈ [0.1,2.0].
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Table 5.1 Experiment I: 100 Firefly Algorithm simulations, consisted of iter = 100 itera-
tions and m = 100 of the population size, for each problem

problem optimum obj. value found γ timeStep

chr12a 9552 9552 opt. 0.8509 0.8341

tai12a 224416 224416 opt. 0.2209 0.2712

esc16h 996 996 opt. 0.2209 0.2712

nug18 1930 1938 - 0.7856 1.1389

had20 - 6922 6922 opt. 0.9482 0.1957

chr20a 2192 4206 - 0.1201 0.5693

chr25a 3796 9196 - 0.1251 1.5856

tai25b 34435646 386867346 - 0.1719 1.4515

bur26a 5426670 5465662 - 0.8879 0.1099

tho30 149936 174590 - 0.8299 1.1934

esc32g 6 6 opt. 0.2209 0.2712

5.3 Results

5.3.1 Results of Experiment I

From 100 simulations for each problem, there were chosen simulations with the best results and

put into the Table 5.1. Algorithm found optimum for 5 out of 11 problems and in the rest the found

results are relatively close to the optimum, except the problems chr20a and chr25a, which seems

to be difficult for the DFA to solve.

Table 5.2 shows µ , the means, and σ , the standard deviations, of the objective values, γs

and timeSteps, calculated from the 10 best results out of 100 of each problem. Problems tai12a,
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Table 5.2 Experiment I: Means (µ) and standard deviations (σ ) of the objective values,
γs and timeSteps, calculated from 10 best results from Experiment I

problem µ(ob j. value) σ(ob j.value) µ(γ) σ(γ) µ(timeStep) σ(timeStep)

chr12a 9590.4 114.4797 0.47648 0.31114 1.0946 0.56714

tai12a 224416 0 0.34626 0.22607 1.0837 0.46997

esc16h 996 0 0.58051 0.2758 0.96023 0.68788

nug18 1965 14.1814 0.67373 0.28836 1.0259 0.69435

had20 6943.8 15.4186 0.59939 0.3195 0.96493 0.68728

chr20a 4472.6 112.5425 0.46691 0.3158 1.0825 0.57128

chr25a 9663.4 174.1786 0.59425 0.34911 0.85152 0.57947

tai25b 394876343.5 4858277.7263 0.601 0.32635 1.139 0.62356

bur26a 5474216.1 3356.0987 0.6557 0.29502 0.96376 0.66804

tho30 177192.6 1171.9947 0.49934 0.36375 1.0484 0.57131

esc32g 6 0 0.64008 0.3396 0.79045 0.59141

esc16h and esc32g have σ(ob j. value) = 0, which means all the 10 most successful simulations

have found exactly the same value, which is in these cases was the optimum solution. Problems

nug18 and had20 had small dispersion of the results, since their σ(ob j. value) is small. On the

contrary, problem tai25b had the biggest dispersion. The γs are around the value 0.5, which is

the mean of the uniform distribution U [0,1), from which the values were chosen. Same for the

timeSteps that were chosen from U [0,2) and are around the value 1.0, so no general conclusion

can be made out.
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Table 5.3 Experiment II: 10 Firefly Algorithm simulations on each problem of iter = 500
iterations and m = 500 of the population size

problem optimum obj. value found γ timeStep

chr12a 9552 9552 opt. 0.8600 1.2797

tai12a 224416 224416 opt. 0.4220 1.7274

esc16h 996 996 opt. 0.4220 1.7274

nug18 1930 1958 - 0.4688 1.8760

had20 6922 6922 opt. 0.4688 1.8760

chr20a 2192 4188 - 0.4688 1.8760

chr25a 3796 9120 - 0.8393 0.6063

tai25b 34435646 379405014 - 0.9836 1.4223

bur26a 5426670 5432767 - 0.7896 1.7993

tho30 149936 175874 - 0.3061 1.0531

esc32g 6 6 opt. 0.4220 1.7274

5.3.2 Results of Experiment II

Results of the Experiment II are in the Table 5.3. In spite of running only 10 simulations per

problem, but raising iterations and population size, results are better (meaning closer to the optima)

in all the problems but one, the chr20a instance, which got slightly worse.

5.3.3 Results of Experiment III

This experiment took computation time of 12 days on processor AMD Athlon II X2 260 Dual Core

3.2GHz. Results are illustrated in the Table 5.4, and are again, as it was expected, better than the re-

sults from the Experiments I and II. The means and standard deviations are in the Table 5.5. In this
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Table 5.4 Experiment of 100 Firefly Algorithm simulations on each problem of 500 iter-
ations and 500 of the population size

problem optimum FA found γ timeStep

chr12a 9552 9552 opt. 0.1823 0.6544

tai12a 224416 224416 opt. 0.5955 1.5959

esc16h 996 996 opt. 0.2336 1.9660

nug18 1930 1946 - 0.5959 1.7005

had20 6922 6922 opt. 0.2336 1.9560

chr20a 2192 3824 - 0.4339 1.6649

chr25a 3796 8716 - 0.0177 1.3468

tai25b 34435646 372821202 - 0.1946 1.9393

bur26a 5426670 5432634 - 0.1823 0.6544

tho30 149936 171546 - 0.9816 0.6227

esc32g 6 6 opt. 0.5959 1.7005

table we can observe, that all the σ(ob j. value) has lessened, which means that this configuration,

of longer run (iter = 500) and bigger population (m = 500), results in having lower dispersion,

hence is more stable, than it was in the Experiment I (iter = 100 and m = 100). Another noticeable

change is that the standard deviations of γs, the σ(γ), of the problems chr12a, esc16h, had20 and

esc32g have decreased. It means that these best 10 runs had their γs set close to the µ(γ). This

way we can determine best configuration of DFA for these problems. For example to obtain best

solution of the problem esc16h, the best setting is to set γ ≈ 0.47. Of course to gain more accurate

values, we need to run much more experiments.

Graphs in Fig. 5.1 and Fig. 5.2 show the progress of the search for the optima of all the 11
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Table 5.5 Best 10 result from experiment III

problem µ(ob j. value) σ(ob j. value) µ(γ) σ(γ) µ(timeStep) σ(timeStep)

chr12a 9552 0 0.36800 0.1987 0.94430 0.46860

tai12a 224416 0 0.52923 0.32234 1.18590 0.64542

esc16h 996 0 0.47245 0.12869 1.27930 0.47849

nug18 1995 46.7166 0.58521 0.24987 1.33140 0.54945

had20 6922 0 0.42085 0.18225 1.29800 0.55875

chr20a 3982 84.5327 0.53728 0.26636 0.93169 0.61692

chr25a 9077.8 174.1786 0.59425 0.34911 0.85152 0.57947

tai25b 375488560 1208102.9 0.50898 0.30296 0.92502 0.60225

bur26a 5433182.4 567.1596 0.55538 0.25451 0.97128 0.55667

tho30 174076.6 1470.5156 0.42932 0.36307 1.16220 0.42789

esc32g 6 0 0.47245 0.12869 1.27930 0.47849
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problems:

• problem chr12a — in the Fig. 5.1(a) the DFA found optimum 23 times out of 100 runs.

After 100 iterations the improvement is very weak, which means that solutions stuck in a

local optima, so for this problem it is better to run more simulations with lower iteration

number than the other way around.

• problem tai12a — the Fig. 5.1(b) is a similar case as it is in the Fig. 5.1(a). Improvement

progress here usually stops even earlier, after about 50 iterations. Optimum found about 18

times out of 100 runs.

• problem esc16h — is very easy for the DFA, since the optimum was found in all 100 cases

and under 200 iteration as it is shown in Fig. 5.1(c).

• problem nug18 — seem to be on the other hand quite difficult to solve for the DFA, since it

did not find an optimum at all. Fig. 5.1(d) shows that after 100 iterations results are scattered

(big dispersion).

• problem had20 — belongs among the simple problems for DFA since optimum was found

34 times out of 100 runs, as it is depicted in Fig. 5.1(e).

• problems chr20a, chr25a, tai25b, bur26a and tho30 — optimum for these problems were not

found in 500 runs at all. Progress is depicted in Fig. 5.1(f) and Fig. 5.2(a)-(d). There were

still ongoing improvements, but in only few simulations. These problems have very large

search space1, and require more than 500 iterations to find their optima. Point of heuristics

is to find a relatively good solution in short time, not the optimum. And as it can be seen,

improvement of these problems from the random starting solution is big

1problem chr20a has got 20! = 2.4×1018 permutations; chr25a and tai25b have got 25! = 1.5×1025 permutations;

bur26a has got 26! = 4×1026 permutations and tho30 30! = 2.6×1032 permutations.
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• problem esc32g — though its space has got 32! = 2.6× 1035 different permutations, opti-

mum was always found in fewer than 100 iterations. The reason is because in this problem,

there are many optima scattered around the search space. All the 100 runs found unique

permutation that is a optimum for this problem.

5.4 Discussion

Before launching Experiments, I assumed that the larger the space search is, the lower absorption

coefficient γ should be set, in order to find better results. My reasoning was, that if the fireflies for

the large search space are set into a thick fog (absorption coefficient represents the fog), they would

constantly roam randomly since they would not be able to see any of the other fireflies, whereas in

a thin fog, they would be able to see others advance toward them, hence to the balance exploration

and exploitation in the searching. On the other hand, in a small search space, the fog should be

thicker to prevent fireflies rapidly advance towards the best solution and stuck in it’s suboptimal

valley. Experiments have shown it is not true, and that the absorption coefficient depends more on

a problem itself rather than the search space size. Fortunately it was possible to deduce best γ for

the couple of problems.
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(a) Progress of chr12a (b) Progress of tai12a

(c) Progress of esc16h (d) Progress of nug18

(e) Progress of had20 (f) Progress of chr20a

Figure 5.1 Progress’ of finding the lowest objective function value of different problems.
Data are from the results of Experiment III
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(a) Progress of chr25a (b) Progress of tai25b

(c) Progress of bur26a (d) Progress of tho30

(e) Progress of esc32g

Figure 5.2 Progress’ of finding the lowest objective function value of different problems.
Data are from the results of Experiment III
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Chapter 6

Conclusion

The goal of this thesis, to convert continuous Firefly Algorithm into Discrete Firefly Algorithm

to solve the Quadratic Assignment Problems, was successfully achieved. There were proposed

discrete versions of the continuous functions Distance, Attractiveness and Movement. DFA was

implemented into the SEAGE framework in abstract level, giving the user liberty in defining the

functions Distance, Attractiveness and Movement anyway it is desired. This gives the algorithm

ability to solve other than QAP kinds of problems, since it relies only on the functions listed above.

If someone wants to use DFA to solve e.g., Graph Colouring Problem (GCP), all he is required to

do is to define how to measure distances between two GCP solutions (Distance function), how

to measure Attractiveness between them, and to define a Movement of one solution towards the

another. The Quadratic Assignment Problem was implemented into the SEAGE framework as

well, which of 11 instances were created. DFA functionality was experimentally tested on 11 QAP

instances and showed to be able to find successfully good solutions of these problems. Optima of

the simple problems (instances chr12a, tai12a, esc16h, had20 and esc32g) were often reached in

fewer than 150 iterations, though for the hard problems it did not find an optimum even in 500

iterations, but was seen a big improvement from the starting random solution.
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Appendix A

List of used symbols

X – is the set of all the possible solutions within the search space

n ∈ Z – is the search space’s dimension

~x,x ∈X – is a particular solution in the search space X; if X=Rn, then is used~x = (x1,x2, · · · ,xn),

otherwise x is used

~p, p ∈ X – is the best solution that individual/particle/solution~x have reached during it’s lifetime

~g,g ∈ X – is a globally best so far found solution;~g = argminpi( f (p1), f (p2), · · · , f (pm))
1

~v ∈ Rn – is a velocity vector; in some optimizations next position of xt
i is xt+1

i = xt
i + vi

m ∈ Z – is a size of a population/swarm; number of the solutions/individuals/particles that con-

currently try for improvement

di, j ∈ [0,∞) – is the distance — or amount of differentness — of the i-th solution from the j-th

solution
1in case of the minimalization; for the maximalization instead of min there is max

37
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γ ∈ [0,∞) – is the absorption coefficient that denotes the rate of attenuation of the light intensity

over the distance

f : X→ R – is objective function — called also cost function — that returns evaluation of given

solution. To find the best solution means to find x = argminx∈X( f (x)) (or argmax). Such

minimum or maximum is then called an Optimum or an Optimal solution of X

U(a,b) – is a uniform distribution on the interval (a,b) (a,b ∈ R;a < b)

Sn – is set of all permutations (1,2, · · · ,n)

objective function f : X→ R – also called cost function, is a function we want to minimize (or

maximize, if desired)

optimum xopt ∈ X – is the minimum (resp. the maximum) of the objective function. Formally,

xopt is optimum if and only if: ∀x ∈ X : f (x)≤ f (xopt) (resp. f (x)≥ f (xopt))

objective value of x ∈ X – is the value produced by objective function f (x)
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