
Using Correlated Strategies for Computing Stackelberg Equilibria in
Extensive-Form Games

Jiřı́ Čermák1, Branislav Bošanský1,2, Karel Durkota1, Viliam Lisý1,3, Christopher Kiekintveld4

1 Agent Technology Center, Faculty of Electrical Engineering, Czech Technical University in Prague
2 Department of Computer Science, Aarhus University

3 Department of Computing Science, University of Alberta
4 Department of Computer Science, University of Texas at El Paso

jiri.cermak@agents.fel.cvut.cz, branislav.bosansky@agents.fel.cvut.cz, karel.durkota@agents.fel.cvut.cz,
lisy@ualberta.ca, cdkiekintveld@utep.edu

Abstract

Strong Stackelberg Equilibrium (SSE) is a fundamental solu-
tion concept in game theory in which one player commits to
a strategy, while the other player observes this commitment
and plays a best response. We present a new algorithm for
computing SSE for two-player extensive-form general-sum
games with imperfect information (EFGs) where computing
SSE is an NP-hard problem. Our algorithm is based on a
correlated version of SSE, known as Stackelberg Extensive-
Form Correlated Equilibrium (SEFCE). Our contribution is
therefore twofold: (1) we give the first linear program for
computing SEFCE in EFGs without chance, (2) we repeat-
edly solve and modify this linear program in a systematic
search until we arrive to SSE. Our new algorithm outperforms
the best previous algorithms by several orders of magnitude.

Introduction
The roles of players in many games are often asymmetric.
One example is the ability of one player (the leader) to com-
mit to a strategy, to which the other players (the followers)
react by playing their best response. In real-world scenar-
ios, the leader can model a market leader with the power
to set the price for items or services, or a defense agency
committing to a security protocol to protect critical facilities.
Optimal strategies for the players in such situations are de-
scribed by the Strong Stackelberg Equilibrium (SSE) (Leit-
mann 1978; von Stengel and Zamir 2004). There are many
examples of successful applications of SSE in infrastructure
protection (Tambe 2011) as well as protecting the environ-
ment and wildlife (Fang, Stone, and Tambe 2015).

In most of the existing works, the game models are sim-
plified and do not consider the sequential interaction among
players (Pita et al. 2008; Tsai et al. 2009; Shieh et al. 2012;
Jiang et al. 2013). One reason is computational complexity,
since computing SSE is often NP-hard when sequential in-
teraction is allowed (Letchford and Conitzer 2010). Another
reason is the lack of practical algorithms. The only algo-
rithm designed specifically for computing SSE in two-player
imperfect-information general-sum extensive-form games

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(EFGs) was only introduced recently (Bosansky and Cermak
2015) and formulates the problem as a mixed-integer vari-
ant of sequence-form linear program (referred to as BC15).
However, the scalability of BC15 is limited as it contains a
binary variable for each sequence of actions of the follower.

Our main contribution is a novel algorithm computing
SSE in EFGs that offers a dramatic speed-up in computation
time compared to BC15. The key idea behind our algorithm
is in computing a variant of SSE, where the leader commits
to correlated strategies – i.e., the leader can send signals to
the follower, and the best response of the follower is to fol-
low these signals. We use this variant to find the original SSE
by systematically restricting which signals the leader can
send to the follower. This variant of SSE has previously been
studied in single step games (Conitzer and Korzhyk 2011),
finite turn-based and concurrent-move games (Bosansky et
al. 2015), infinite concurrent-move stochastic games (Letch-
ford et al. 2012), and security games (Xu et al. 2015;
Rabinovich et al. 2015; Durkota et al. 2015). Formally, it
has been defined as Stackelberg Extensive-Form Correlated
Equilibrium (SEFCE) in (Bosansky et al. 2015). While it
was shown that the utility value for the leader in SSE cannot
be closely approximated by SEFCE (Letchford et al. 2012),
we show that one can use SEFCE to compute SSE. Since
there was no previously known algorithm for computing SE-
FCE in EFGs, we also show that SEFCE can be found in
polynomial time in EFGs without chance.

The paper is structured as follows. After introducing the
formalism of EFGs, we formally define both SSE and SE-
FCE, and give an example of a game where these concepts
differ. Next, we present the linear program (LP) for comput-
ing SEFCE in EFGs without chance (we describe a modified
LP for EFGs with chance in the appendix). Afterwards, we
present our algorithm for computing SSE in EFGs that iter-
atively solves the LP for SEFCE with additional constraints
until SSE is reached. Finally, we provide three variants of
our algorithm and show that each variant significantly im-
proves the computation time compared to BC15 on ran-
domly generated games and an example of a search game.



Technical Background
Extensive-form games model sequential interactions be-
tween players and can be visually represented as game trees.
Formally, a two-player EFG is defined as a tuple G =
(N ,H,Z,A, u, C, I): N = {l, f} is a set of players, the
leader and the follower. We use i to refer to one of the play-
ers, and−i to refer to his opponent.H denotes a finite set of
nodes in the game tree. Each node corresponds to a unique
history of actions taken by all players and chance from the
root of the game; hence, we use the terms history and node
interchangeably. We say that h is a prefix of h′ (h v h′) if
h lies on a path from the root of the game tree to h′. A de-
notes the set of all actions. Z ⊆ H is the set of all terminal
nodes of the game. For each z ∈ Z we define a utility func-
tion for each player i (ui : Z → R). Chance player selects
actions based on a fixed probability distribution known to all
players. Function C : H → [0, 1] denotes the probability of
reaching node h due to chance; C(h) is the product of chance
probabilities of all actions in history h.

Imperfect observation of player i is modeled via infor-
mation sets Ii that form a partition over h ∈ H where i
takes action. Player i cannot distinguish between nodes in
any information set I ∈ Ii. We overload the notation and use
A(Ii) to denote possible actions available in each node from
information set Ii. We assume that action a uniquely iden-
tifies the information set where it is available. We assume
perfect recall, which means that players remember history
of their own actions and all information gained during the
course of the game. As a consequence, all nodes in any in-
formation set Ii have the same history of actions for player i.

Pure strategies Πi assign one action for each I ∈ Ii. A
more efficient representation in the form of reduced pure
strategies Π∗i assigns one action for each I ∈ Ii reachable
while playing according to this strategy. A mixed strategy
δi ∈ ∆i is a probability distribution over Πi. For any pair of
strategies δ ∈ ∆ = (∆l,∆f ) we use ui(δ) = ui(δi, δ−i) for
the expected outcome of the game for player i when players
follow strategies δ. A best response of player i to the op-
ponent’s strategy δ−i is a strategy δBRi ∈ BRi(δ−i), where
ui(δ

BR
i , δ−i) ≥ ui(δ′i, δ−i) for all δ′i ∈ ∆i.

Strategies in EFGs with perfect recall can be compactly
represented by using the sequence form (Koller, Megiddo,
and von Stengel 1996). A sequence σi ∈ Σi is an ordered
list of actions taken by a single player i in history h. ∅ stands
for the empty sequence (i.e., a sequence with no actions). A
sequence σi ∈ Σi can be extended by a single valid action
a taken by player i, written as σia = σ′i. We say that σi
is a prefix of σ′i (σi v σ′i) if σ′i is obtained by finite num-
ber (possibly zero) of extensions of σi. We use σi(Ii) and
σi(h) to denote the sequence of i leading to Ii and h, re-
spectively. We use the function Ii(σ′i) to obtain the informa-
tion set in which the last action of the sequence σ′i is taken.
For an empty sequence, function Ii(∅) returns the informa-
tion set of the root node. A mixed strategy of a player can
now be represented as a realization plan (ri : Σi → R).
A realization plan for a sequence σi is the probability that
player i will play σi under the assumption that the opponent
plays to allow the actions specified in σi to be played. By

gi : Σl × Σf → R we denote the extended utility function,
gi(σl, σf ) =

∑
z∈Z|σl(z)=σl∧σf (z)=σf

ui(z)C(z). If no leaf
is reachable with pair of sequences σ, value of gi is 0.

Solution Concepts in EFGs
Here we provide a formal definition of Strong Stackle-
berg Equilibrium (SSE) (e.g., in (Leitmann 1978)) and
Stackelberg Extensive-Form Correlated Equilibrium (SE-
FCE) (Bosansky et al. 2015) and give the intuition on an
example game.
Definition 1. A strategy profile δ = (δl, δf ) is a Strong
Stackelberg Equilibrium if δl is an optimal strategy of the
leader given that the follower best-responds. Formally:

(δl, δf ) = arg max
δ′l∈∆l,δ′f∈BRi(δ′l)

ul(δ
′
l, δ
′
f ). (1)

The SSE of the game in Figure 11 (the first utility in every
leaf is for the leader, second for the follower) prescribes the
leader to commit to playing g in h4, j in h5, and k in h6.
The strategy of the follower is then to play a in h1 and d in
h2, leading to the expected utility of 1 for the leader.

In SEFCE we allow the leader to send signals to the
follower and condition his strategy on sent signals. More
specifically, the leader chooses π∗f ∈ Π∗f as the recom-
mendations for the follower according to SEFCE before the
game starts. The actual recommendation to play some action
a ∈ A(If ) is revealed to the follower only after he reaches
If . Therefore, the follower only knows the past and cur-
rent recommendations, and the probability distribution from
which the recommendations are drawn in the future.
Definition 2. A probability distribution λ on reduced pure
strategy profiles Π∗ is called a Stackelberg Extensive-Form
Correlated Equilibrium if it maximizes the leader’s utility
subject to the constraint that whenever play reaches an in-
formation set I where the follower can act, the follower is
recommended an action a according to λ such that the fol-
lower cannot gain by unilaterally deviating from a in I and
possibly in all succeeding information sets given the pos-
terior on the probability distribution of the strategy of the
leader, defined by the actions taken by the leader so far.

The middle table in Figure 1 represents the distribution
λ forming the SEFCE of the example game (rows are la-
beled by Π∗l , columns by Π∗f ). The leader chooses the sig-
nals to the follower to be either {a, c} or {a, d} based on the
probability distribution depicted in the table. Afterwards, the
corresponding column defines a valid mixed strategy for the
leader and the signals the follower receives in his informa-
tion sets. More specifically, the follower can receive either c
or d in h2. When the follower receives the recommendation
to play c, the leader commits to mix uniformly between g
and h in h4 and to play i in h5. When the follower receives
d as the recommendation, the leader commits to playing g in
h4 and j in h5. Finally in h1 the follower is recommended
to play a, while the leader commits to play k in h6 to ensure
that the follower does not deviate from playing a. The ex-
pected utility of the leader is 1.5 in SEFCE. Note that SSE

1This is a corrected version of the example published on AAAI 2016.



{a, c} {a, d} {b, e} {b, f}
{g, i, k} 0.25 0 0 0
{g, i, l} 0 0 0 0
{g, j, k} 0 0.5 0 0
{g, j, l} 0 0 0 0
{h, i, k} 0.25 0 0 0
{h, i, l} 0 0 0 0
{h, j, k} 0 0 0 0
{h, j, l} 0 0 0 0

∅ (a) (b) (a, c) (a, d) (b, e) (b, f)

∅ 1 1 0 0.5 0.5 0 0
(g) 0.75 0.75 0 0.25 0.5 - -
(h) 0.25 0.25 0 0.25 0 - -
(i) 0.5 0.5 0 0.5 0 - -
(j) 0.5 0.5 0 0 0.5 - -
(k) 1 1 0 - - 0 0
(l) 0 0 0 - - 0 0

Figure 1: (Left) EFG with different SEFCE and SSE. (Middle) SEFCE distribution over Π∗. (Right) SEFCE correlation plan.

in this representation always corresponds to a table where
only a single column of the follower has non-zero values.

LP for Computing SEFCE
To compactly represent the behavior described in the mid-
dle table in Figure 1, we use a correlation plan (von Stengel
and Forges 2008) that is quadratic in the size of the game
tree, instead of the exponential representation using Π∗. A
correlation plan for a sequence pair p(σl, σf ) represents the
expected probability that σl will be played if actions from σf
are recommended to the follower. In order to model SEFCE
strategies using the correlation plan, the follower must be
able to determine whether following the signal is the best re-
sponse. Therefore, we need to specify the plan for so called
relevant sequences. Consider our game in Figure 1; when
the follower receives, for example, signal c in h2, the fol-
lower needs to know the commitment of the leader in the
related part of the tree – i.e, in both nodes h4, h5 – to evalu-
ate whether following the signal is the best response.
Definition 3. A pair of sequences (σl, σf ) is termed relevant
if and only if either σf = ∅, or ∃h, h′ ∈ H, h′ v h;σl =
σl(h) ∧ h′ ∈ If (σf ).

By rel(σi) we denote the set of sequences of −i which
form a relevant pair with σi. In our example rel((a)) =
rel((b)) = Σl, rel((b, e)) = rel((b, f)) = {∅, (k), (l)},
and rel((a, c)) = rel((a, d)) = {∅, (g), (h), (i), (j)}.
Definition 4. A correlation plan (von Stengel and Forges
2008) is a partial function p : Σl × Σf → R such
that there is a probability distribution λ on the set of re-
duced strategy profiles Π∗ so that for each relevant se-
quence pair (σl, σf ), the term p(σl, σf ) is defined and ful-
fills p(σl, σf ) =

∑
(πl,πf )∈Π∗ λ(πl, πf ) where πl, πf pre-

scribe playing all of the actions in σl and σf , respectively.
Let us now describe the SEFCE strategies (middle table

in Figure 1) using the correlation plan (the right table; rows
are labeled by Σl, columns by Σf ). Every column of the ta-
ble corresponds to an expected probability of the occurrence
of the leader’s sequences when the follower follows his rec-
ommendations in the future, and gets the recommendation
to play the σf corresponding to this column. We use ‘-’ to
mark irrelevant sequence pairs. The entry for every σl, σf is
the sum of all the entries corresponding to the pure strategies
containing all the actions from σl and σf in the middle table
of Figure 1. The behavior in columns corresponding to se-
quences (a, c) and (a, d) matches the behavior discussed in

the previous section. The behavior in columns for sequence
∅ and (a) corresponds to the expected probability of playing
sequences of the leader given the probability of recommen-
dations, e.g., the probability of playing g for the recommen-
dation (a) is equal to p((g), (a, c)) + p((g), (a, d)) (in this
case the leader will play uniformly either g with probability
0.5 according to the column for (a, c) or g with probability 1
according to the column for (a, d)). Probabilities in column
for (a) allow the follower to evaluate his choices in h1.

Now we are ready to describe the LP for computing SE-
FCE in EFGs without chance that uses correlation plan:

max
p,v

∑
σl∈Σl

∑
σf∈Σf

p(σl, σf )gl(σl, σf ) (2)

s.t. p(∅, ∅) = 1; 0 ≤ p(σl, σf ) ≤ 1 (3)

p(σl(I), σf ) =
∑

a∈A(I)

p(σl(I)a, σf ) ∀I ∈ Il, ∀σf ∈ rel(σl) (4)

p(σl, σf (I)) =
∑

a∈A(I)

p(σl, σf (I)a) ∀I ∈ If , ∀σl ∈ rel(σf ) (5)

v(σf ) =
∑

σl∈rel(σf )

p(σl, σf )gf (σl, σf ) +

+
∑

I∈If ; σf (I)=σf

∑
a∈Af (I)

v(σfa) ∀σf ∈ Σf (6)

v(I, σf ) ≥
∑

σl∈rel(σf )

p(σl, σf )gf (σl, σf (I)a) +
∑

I′∈If ; σf (I′)=σf (I)a

v(I ′, σf )

∀I ∈If , ∀σf ∈
⋃

h∈I
rel(σl(h)),∀a ∈ A(I) (7)

v(σf (I)a) = v(I, σf (I)a) ∀I ∈ If , ∀a ∈ A(I) (8)

The LP is derived from the computation of Extensive-Form
Correlated Equilibrium (von Stengel and Forges 2008) by
omitting the incentive constraints for the leader and maxi-
mizing the expected utility of the leader (this is similar to
the approach in normal-form games (Conitzer and Korzhyk
2011)). Constraints (3) to (5) ensure that p is a well-formed
correlation plan. Constraint (6) ensures that v(σf ) represents
the expected utility of playing σf for the follower, when he
follows his recommendations. The first sum represents the
expected utility of the leaves reached by playing according
to σl and σf , the second sum represents the contribution of
the expected utility from information sets reached by the
continuations of σf . Constraint (7) ensures that v(If , σf )
is the maximum over all possible sequences leaving If (de-
noted as σf (If )a for all a ∈ A(If )) after the follower has



received recommendation σf . Finally, constraint (8) forces
the move recommended to the follower in If to be optimal.
Definition 5. We say that p uses inconsistent recommen-
dation in I ∈ If if and only if p defines two different
recommendations for the follower in I . Formally, ∃a, a′ ∈
A(I), a 6= a′,∃σl, σ′l ∈

⋃
h∈I σl(h) p(σl, σf (I)a) > 0 ∧

p(σ′l, σf (I)a′) > 0. If there exists no such information set
we say that p uses only consistent recommendations.
Theorem 1. Assume a solution of the LP as described in
eqs. (2) to (8) such that there are only consistent recommen-
dations for the follower. There is a SSE strategy that can be
found in polynomial time from the p variables.

Proof. First, we show how the strategy of the leader is con-
structed. In every I ∈ Il there is a subset Σr of relevant se-
quences rel(σl(I)) played with a positive probability. The
behavior in I is specified by p(σl(I)a, σf ) for all a ∈ A(I)
for arbitrary σf ∈ Σr, as the behavior is the same for all
σ′f ∈ Σr. This is guaranteed by constraint (5) – it forces the
probability of p(σl, σ′f ) to be equal to the sum of p(σl, σ′′f )

over all extensions σ′′f of σ′f . Since there can be only a single
extension played with positive probability (assumed consis-
tent recommendations) the probabilities must be equal.

For every I ∈ If there exists at most one action a ∈ A(I)
with p(σl, σfa) > 0 for some σl ∈ Σl and σf = σf (I)
(consistent recommendations). By taking these actions and
arbitrary actions in information sets where there is no such
action a, we obtain a pure strategy for the follower. Finally,
due to the correctness of the strategy of the leader proved in
the previous step and constraints (6–8), this pure strategy is
a best response of the follower.

Theorem 2. Assume a solution of the LP as described in
eqs. (2) to (8). The objective value is greater than or equal
to the expected utility of the leader in SSE.

Proof. Theorem 1 shows that in case the leader uses only
consistent recommendations, the value of the LP corre-
sponds to the expected utility of the leader in SSE. If the
leader can also use inconsistent recommendations, the value
of the LP can be only greater or equal.

Algorithm Computing SSE
In this section we describe the algorithm for computing
SSE. The algorithm uses the linear program for computing
SEFCE in case the game is without chance. Otherwise, a
slightly modified version of this LP is required, however, the
algorithm remains the same. Due to the space constraints,
we describe this modified LP in details in the appendix of
the paper and refer to one of these two LPs as UB-SSE-LP.

The high level idea of our algorithm (depicted in Algo-
rithm 1) is a recursive application of the following steps:
(1) solve the UB-SSE-LP, (2) detect the set of information
sets of the follower with inconsistent recommendations Iin,
(3) restrict the leader to use only consistent recommenda-
tions in Iin by adding new constraints to the UB-SSE-LP.
Restrictions are added cumulatively, until we arrive at a
restricted UB-SSE-LP yielding only consistent p. The ex-
pected utility for the leader and the correlation plan p in this

Input: An UB-SSE-LP P
Output: leader’s expected utility and strategy profile in SSE

1 M ← {(∞, ∅)}; LB ← −∞; pc ← ∅
2 while M 6= ∅ do
3 (UB ,m)← max(M )
4 if UB < LB then
5 return (LB, pc)
6 apply(m, P )
7 if feasible(P ) then
8 (value, p)← solve(P )
9 Iin ← inconsistentRecommendations(p)

10 if Iin = ∅ then
11 if value > LB then LB ← value; pc ← p
12 else addRestrictions((UB ,m), M , Iin, value)
13 revert(m, P )
14 return (LB, pc)

Algorithm 1: Algorithm for computing the SSE.

solution correspond to a candidate for the expected utility
of the leader and the strategies of players in SSE. It is only
a solution candidate, since we have enforced actions, which
may not be a part of SSE.

In more details, Algorithm 1 assumes as the input the UB-
SSE-LP P for the game we want to solve. By modification
mod = (UB ,m) we denote a pair of constraints m, to be
added to P , and the upper bound UB on the value of P after
adding the constraints. M is the set of modifications to be
explored during the search for the SSE sorted in descending
order of UB . The variable LB stores the expected utility for
the leader in the best solution candidate found so far pc. The
main cycle of the algorithm starts on line 2, we iterate until
there are no possible modifications of P left. On line 3 we
remove the modification with the highest UB from M . We
choose such mod = (UB ,m) in order to first explore mod-
ifications with the potential to lead to solution candidates
with the highest expected utility for the leader. The algo-
rithm verifies whether the modification mod (the one with
the highest UB value) can improve the current best solution
candidate (line 4). If not, the algorithm terminates and the
best candidate found so far is the SSE. Otherwise, we add the
constraints in m to P (line 6). If the modified P is feasible,
the algorithm solves the LP (line 8) obtaining the expected
utility of the leader and the correlation plan p. We find the set
of information sets where the follower gets an inconsistent
recommendation in p (line 9). If p uses only consistent rec-
ommendations, this solution corresponds to a solution can-
didate. If the expected utility for the leader is higher than
for the best solution candidate found so far, we replace it
(line 11). If Iin is not empty, we generate new modifications
to be applied to P and add them to M (line 12). The func-
tion addRestrictionswill be discussed in more detail in the
next subsection, as we explored several options of the modi-
fication generation. Finally, we revert the changes in m (line
13). If there are modifications left to be explored in M we
continue with the next iteration. Every modification contains
all the constraints added to the original P given as an input,
therefore after revert we again obtain the original P .

When we enforce the whole strategy of the follower to
be consistent with the SSE, the solution of the LP corre-



1 addRestrictions((UB ,m), M , Iin, value)
2 I ← getShallowest(Iin)
3 for a ∈ A(I) do
4 UBa ← value; ma ← m
5 for σl ∈ rel(σf (I)a) do
6 ma ← ma ∪ {p(σl, σf (I)) = p(σl, σf (I)a)}
7 M ←M ∪ {(UBa,ma)}

Algorithm 2: SI-LP.

sponds to the SSE, as it now maximizes the expected utility
of the leader under the restriction the follower gets recom-
mended the pure best response to the strategy of the leader.
It remains to be shown, that we are guaranteed to add mod-
ifications to M which force the correct set of actions of
the follower in every version of addRestrictions. The fi-
nal correctness arguments will be provided after discussing
the addRestrictions versions used.

Rules for Restricting Follower’s Behavior
We examine different approaches for method addRestric-
tions that generates new modifications of UB-SSE-LP re-
sulting in three different variants of our new algorithm.

In Algorithm 2 we describe the first version of the func-
tion addRestrictions, labeled SI-LP. On line 2 we find the
shallowest information set I , where the follower receives an
inconsistent recommendation. We generate modification for
every a ∈ A(I). Every such modification enforces corre-
sponding a ∈ A(I) to be recommended deterministically.
The upper bound is set to the value of P computed before
invoking addRestrictions. The shallowest information set
is chosen to avoid unnecessary modifications in deeper parts
of the game tree, which might end up not being visited at all.
This version of addRestrictions transforms Algorithm 1 to
branch and bound algorithm.

By adding mod = (UB ,m) to M for every action in the
shallowest information set with inconsistent recommenda-
tions, until no such set exists, we ensure that all of the ac-
tions which might form a part of SSE will be tried. The be-
havior in information sets with consistent recommendation
need not be restricted, as we are sure that the follower has
no incentive to deviate and therefore plays his best response
maximizing the expected utility of the leader. Finally, since
we assign to UB a value which forms an upper bound on the
solution of P after adding constraints m, we are sure that if
we terminate the algorithm on line 4 in Algorithm 1, there is
indeed no possibility to encounter a solution candidate better
than the one yielding the current LB.

A second option, presented in Algorithm 3, chooses Ic ⊆
Iin (line 2) and restricts the recommendations in every
I ∈ Ic. The restriction in I is done in the following way.
First, detect the subset Ac of A(I) of actions which are rec-
ommended with positive probability (line 5) and make the
recommendation mutually exclusive using binary variables
(lines 8 and 9), converting the LP P to a mixed integer lin-
ear program (MILP). We use two options of creating Ic.
First, we create a singleton containing only the shallowest
I ∈ Iin, we refer to this algorithm as SI-MILP. Second, we
let Ic = Iin, we refer to this algorithm as AI-MILP. Algo-

1 addRestrictions((UB ,m), M , Iin, value)
2 Ic ← chooseSets(Iin)
3 UB ′ ←∞; m′ ← m
4 for I ∈ Ic do
5 Ac ← {a ∈ A(I)|∃σl ∈ Σl p(σl, σf (I)a) > 0}
6 for a ∈ Ac do
7 for σl ∈ rel(σf (I)a) do
8 m′ ← m′ ∪ {p(σl, σf (I)a) ≤ ba}
9 m′ ← m′ ∪ {

∑
a∈Ac

ba = 1}
10 M ←M ∪ {(UB ′,m′)}

Algorithm 3: MILP.

rithm 1 using both SI-MILP and AI-MILP closely resembles
constraint generation, with the difference that additional bi-
nary variables are also added in every iteration.

If we introduce a binary variable for every action of the
follower in the game, we are guaranteed to obtain the SSE,
as the MILP then finds a strategy profile maximizing the ex-
pected utility of the leader (ensured by the objective), while
the follower plays a pure best response to the strategy of
the leader (breaking ties in favor of the leader due to the
objective), which is the definition of the SSE. If we cre-
ate some partial enforcement of consistent recommendations
using the binary variables and we obtain a pure strategy for
the follower then this is again SSE, since the enforcement in
the rest of the game would not make any difference as the
follower already gets consistent recommendations there. Fi-
nally, since we restrict the follower’s recommendations until
consistent recommendations are obtained, both MILP based
rules indeed guarantee to find the SSE.

Experimental Evaluation
We now turn to the experimental evaluation of the three de-
scribed variants of our algorithm for computing an SSE. We
use BC15 (Bosansky and Cermak 2015) as a baseline, state-
of-the-art algorithm for computing SSE in EFGs. Single-
threaded IBM CPLEX 12.5 solver was used to compute all
the (MI)LPs. We use two different domains previously used
for evaluation of BC15: a search game representing the sce-
nario where security units defend several targets against an
attacker, and randomly generated games.

Search Game. The search game is played on a directed
graph (see Figure 2). The follower aims to reach one of
the destination nodes (D1 – D3) from starting node (E) in
a given number of moves, while the leader aims to catch the
follower with one of the two units operating in the shaded
areas of the graph (P1 and P2). The follower receives dif-
ferent reward for reaching different destination node (the
reward is randomly selected from the interval [1, 2]). The
leader receives positive reward 1 for capturing the follower.
Once the follower runs out of moves without reaching any
goal or being captured, both players receive 0. The follower
leaves tracks in the visited nodes that can be discovered if
the leader visits the node. The follower can erase the tracks
in the current node (it takes one turn of the game). The fol-
lower does not know the position of the patrolling units, the
leader observes only the tracks left by the follower.



Algs \ Steps 4 5 6
BC15 25 863 42,261
SI-LP 9 212 10,790
AI-MILP 6 257 11,997
SI-MILP 5 272 11,263

Figure 2: (Left) Search game graph. (Right) Runtimes in
seconds for the search game with increasing depth.

Table 1: Number of games solved in given time intervals.
Algs\Runtime 1s 5s 30s 2min 25min 4h
BC15 2 12 137 245 393 55
SI-LP 583 191 54 12 4 0
AI-MILP 529 259 51 5 0 0
SI-MILP 483 279 72 9 1 0

Randomly Generated Games. We use randomly gener-
ated games, where in each state of the game the number of
available actions is randomly generated up to a given pa-
rameter {2, . . . ,maxA}. Each action leads to a state where
the opponent is to move and also generates an observa-
tion for the opponent. An observation is a number from a
set {1, . . . ,maxO} and determines partitioning of the nodes
into the information sets – for player i, the nodes h with the
same history of moves σi(h) and the observations generated
by the actions of the opponent −i belong to the same infor-
mation set. We generate games of differing sizes by varying
parameters maxA = {3, 4}, maxO = {2, 3}, and depth of
the game (up to 5 actions for each player). The utility for the
players is randomly generated in the interval [−100, 100].
The utilities are correlated with factor set to −0.5 (1 repre-
sents identical utilities, −1 zero-sum utilities).

Results
The runtime results on random games are depicted in the top
graph of Figure 3. The x-axis shows the number of realiza-
tion plans of the follower, while the y-axis depicts the time in
seconds needed to solve a given instance (both axes are log-
arithmic). The number of realization plans of the follower is
a good estimate of how difficult the game is to solve as it re-
flects both the size of the game as well as the structure of in-
formation sets. Each point represents the mean time needed
for every algorithm to solve the instances from a given time
interval (at least 600 different instances). The standard er-
rors of the mean values are very small compared to the dif-
ferences between algorithms and not visible in the graph.

The results show that each of the variants significantly
outperforms the previous state-of-the-art algorithm BC15. It
typically takes around 10 minutes for BC15 to solve games
with 106 realization plans of the follower, while our algo-
rithms were often able to find solutions under a second. AI-
MILP performs best on average, since it is the least sensitive
to the different structure of the instances solved. AI-MILP
fixes the behavior in a higher number of information sets and
so it preforms a successful trade off between the complexity
of solving a single MILP and the number of MILP invoca-
tions. The second best approach on average is the SI-MILP.

●

●

●
●

● ●

●

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

number of realization plans

ru
n
ti
m

e
 [
s
] ● BC15

SI−LP

AI−MILP

SI−MILP

0

100

200

300

10
−1

10
0

10
1

10
2

10
3

10
4

runtime [s]

n
u
m

b
e
r 

o
f 
s
o
lv

e
d
 g

a
m

e
s

BC15

SI−LP

AI−MILP

SI−MILP

Figure 3: (Top) Runtimes on randomly generated games.
(Bottom) Number of solved games in given time intervals.

The average performance is slightly worse due to a higher
number of MILP invocations needed to solve more difficult
instances (i.e., the ones with many inconsistent recommen-
dations). Finally, the SI-LP has the worst average perfor-
mance out of the variants of our new algorithm, since SI-LP
needs even more LP invocations on more difficult instances
in comparison to the previous variants of our algorithm.

Additionally, we provide in the bottom graph of Figure 3
a histogram for number of instances solved (y-axis) within a
time interval (x-axis). The results were calculated on random
games with the number of realization plans from interval
[3 ·105, 3 ·106]. Despite a slightly worse averge performance
of SI-LP on these instances, it solved the highest number of
instances very fast compared to the other two variants (SI-LP
solves 69% of the instances under 1 second, while AI-MILP
solves 62% and SI-MILP 57%). The histogram also shows
the reason behind the worse average performance of SI-LP.
There are multiple instances that SI-LP solves in more then
200 seconds, while such outliers are not present for the latter
two variants (the worst outlier for SI-LP took 773 seconds,
while the longest time for SI-MILP was 146 seconds, for AI-
MILP 57 seconds and for BC15 2.5 hours). For clarity we
provide the same data in coarser intervals in Table 1, where
the outliers are clearly visible (the label of column represents
the upper bound of the corresponding time interval, the la-
bel of the column to the left the lower bound of the time
interval). The results show that SI-LP is more efficient on
instances where the advantage in using the correlated strate-
gies is marginal and there are only few information sets with
inconsistent recommendations. On the other hand, AI-MILP
offers higher robustness across different instances.

Finally, in Figure 2 we present the results on the search
game. All the new approaches performed similarly, outper-
forming the BC15 in every setting. This shows that our al-



gorithm outperforms BC15 even in an unfavorable setting.
The search game has a specific structure, where the strategy
space of the leader is large (joint actions of the patrolling
units), while the strategy space of the follower is signifi-
cantly smaller. This structure is favorable for BC15, since
it implies a relatively small number of binary variables (the
MILP contains one binary variables for each sequence of the
follower), with the overall size of the MILP being linear in
the size of the game, while the size of our underlying LP is
quadratic due to the correlation plan.

Conclusion
We present a novel domain-independent algorithm for com-
puting Strong Stackelberg Equilibria (SSE) in extensive-
form games that uses the correlated variant of Stackelberg
Equilibria (Stackelberg Extensive-Form Correlated Equilib-
rium). This work opens several areas for future research.
First, our algorithm can be adapted and applied for solving
specific domains since its scalability is significantly better in
comparison to the existing algorithms. Second, the scalabil-
ity can most-likely be further improved by employing iter-
ative approaches for solving the underlying linear program.
Third, several question were not addressed in our approach
and remain open: Is it possible to generalize presented algo-
rithm for computing SSE with multiple followers? Can we
relax the assumption of perfect recall?

Acknowledgments
This research was supported by the Czech Science Founda-
tion (grant no. 15-23235S), by the Danish National Research
Foundation and The National Science Foundation of China
(under the grant 61361136003) for the Sino-Danish Cen-
ter for the Theory of Interactive Computation and Office of
Naval Research Global (grant no. N62909-13-1-N256). This
material is based upon work supported by the National Sci-
ence Foundation (grant no. IIS-1253950). This research was
supported by Alberta Innovates Technology Futures through
the Alberta Innovates Centre for Machine Learning and Re-
inforcement Learning and AI Lab and by the Grant Agency
of the Czech Technical University in Prague, grant No.
SGS15/205/OHK3/3T/13 and SGS15/206/OHK3/3T/13.

References
Bosansky, B., and Cermak, J. 2015. Sequence-Form Al-
gorithm for Computing Stackelberg Equilibria in Extensive-
Form Games. In AAAI Conference on Artificial Intelligence,
805–811.
Bosansky, B.; Branzei, S.; Hansen, K. A.; Miltersen, P. B.;
and Sorensen, T. B. 2015. Computation of Stackelberg Equi-
libria of Finite Sequential Games. In 11th Conference on
Web and Informatics (WINE).
Conitzer, V., and Korzhyk, D. 2011. Commitment to Cor-
related Strategies. In AAAI Conference on Artificial Intelli-
gence.
Durkota, K.; Lisy, V.; Bosansky, B.; and Kiekintveld, C.
2015. Approximate solutions for attack graph games with
imperfect information. In Decision and Game Theory for
Security, 228–249. Springer.

Fang, F.; Stone, P.; and Tambe, M. 2015. When Security
Games Go Green: Designing Defender Strategies to Pre-
vent Poaching and Illegal Fishing. In Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence, IJCAI,
2589–2595.
Jiang, A. X.; Yin, Z.; Zhang, C.; Tambe, M.; and Kraus,
S. 2013. Game-theoretic Randomization for Security Pa-
trolling with Dynamic Execution Uncertainty. In 12th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 207–214.
Koller, D.; Megiddo, N.; and von Stengel, B. 1996. Efficient
Computation of Equilibria for Extensive two-person Games.
Games and Economic Behavior 247–259.
Leitmann, G. 1978. On generalized Stackelberg strate-
gies. Journal of Optimization Theory and Applications
26(4):637–643.
Letchford, J., and Conitzer, V. 2010. Computing Optimal
Strategies to Commit to in Extensive-Form Games. In 11th
ACM conference on Electronic commerce, 83–92.
Letchford, J.; MacDermed, L.; Conitzer, V.; Parr, R.; and
Isbell, C. L. 2012. Computing Optimal Strategies to Commit
to in Stochastic Games. In AAAI Conference on Artificial
Intelligence.
Pita, J.; Jain, M.; Marecki, J.; Ordóñez, F.; Portway, C.;
Tambe, M.; Western, C.; Paruchuri, P.; and Kraus, S. 2008.
Deployed ARMOR protection: the application of a game
theoretic model for security at the Los Angeles International
Airport. In 7th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 125–132.
Rabinovich, Z.; Jiang, A. X.; Jain, M.; and Xu, H. 2015. In-
formation Disclosure as a Means to Security. In 14th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 645–653.
Shieh, E.; An, B.; Yang, R.; Tambe, M.; Baldwin, C.; Di-
Renzo, J.; Maule, B.; and Meyer, G. 2012. Protect: A
deployed game theoretic system to protect the ports of the
united states. In 11th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), 13–20.
Tambe, M. 2011. Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. Cambridge University
Press.
Tsai, J.; Kiekintveld, C.; Ordóñez, F.; Tamble, M.; and
Rathi, S. 2009. IRIS - A Tool for Strategic Security Alloca-
tion in Transportation Networks Categories and Subject De-
scriptors. In 8th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 37–44.
von Stengel, B., and Forges, F. 2008. Extensive-form Corre-
lated Equilibrium: Definition and Computational Complex-
ity. Mathematics of Operations Research 33(4):1002–1022.
von Stengel, B., and Zamir, S. 2004. Leadership with Com-
mitment to Mixed Strategies. Technical report, CDAM Re-
search Report LSE-CDAM-2004-01.
Xu, H.; Rabinovich, Z.; Dughmi, S.; and Tambe, M. 2015.
Exploring Information Asymmetry in Two-Stage Security
Games. In AAAI Conference on Artificial Intelligence.



Appendix
Extensive-Form Games with Chance
In this section we analyze the situation when EFGs con-
tain chance. With chance, one cannot directly use the cor-
relation plan as defined in Definition 4 to compute SEFCE
– von Stengel and Forges showed (2008) that the presence
of chance disrupts the structure of relevant sequences. More
specifically, by using correlation plan p, one can describe a
richer set of strategies that does not correspond to Extensive-
Form Correlated Equilibrium, defined as a probability distri-
bution over (reduced) pure strategy profiles.

We are, however, interested in finding SSE for a given
EFG with chance – i.e., such a solution of the LP in eqs. (2)
to (8) which recommends only a single pure strategy to the
follower. We can exploit this restriction and modify the LP
that uses correlation plan according to Definition 4. We show
that this new LP (1) returns SSE if all recommendations for
the follower are consistent; (2) computes an upper bound on
the expected utility of the leader in SSE.

The main difference caused by chance is that multiple
nodes in information sets of the leader can now be reached
with a non-zero probability in p even if the recommendation
for the follower is always consistent. This is not the case in
games without chance, since each node in an information
set of the leader has the same history for the leader (due
to perfect recall) and a different sequence of actions of the
follower. Therefore, we need to add constraints ensuring that
the strategy of the leader cannot depend on actions of chance
unobserved by the leader (i.e., they spawn different nodes in
an information set of the leader).
Definition 6. Let I ∈ Il be an information set of the
leader and h ∈ I nodes in this information set. Define
ΓI = (γ1, γ2, . . .) to be a partitioning of the nodes in I
based on the history of chance. Every node h belongs to ex-
actly one set γk such that all nodes in γk share the same
sequence of chance actions. Formally,

∀h ∈ I ∃γk ∈ ΓI h ∈ γk
∀h, h′ ∈ γk σC(h) = σC(h

′)

∀h ∈ γk ∀h′ ∈ γj k 6= j ∧ σC(h) 6= σC(h
′)

Next, we extend the definition of relevant sequences to a
restricted set such that the sequences are relevant due to a
specific node in the information set of the leader h:

rel(h) = {σf |∃h′ ∈ H, h′ v h;h′ ∈ If (σf )},
additionally there can be no pair of sequences σf , σ′f ∈
rel(h) such that one is a strict prefix of another: σf v σ′f
and σf 6= σ′f . Now we can give a modified version of LP
used in our algorithm:

max
p,v

∑
σl∈Σl

∑
σf∈Σf

pσl,σf
gl(σl, σf ) (9)

s.t. constraints (3)-(8) (10)

sI,al =
∑
h∈γk

∑
σf∈rel(h)

p(σl(I)al, σf )

∀I ∈ Il∀al ∈ Al(I)∀γk ∈ ΓI (11)
0 ≤sI,al ≤ 1 ∀I ∈ Il∀al ∈ Al(I) (12)

We added a new variable sI,al that represents the realiza-
tion probability of action al being played in the information
set I . Constraint (11) now ensures that the strategy in this
information set cannot depend on chance, as shown by the
following Lemma and Theorem.

Lemma 1. Assume a solution of the LP described in eqs. (9-
12) such that there are only consistent recommendations for
the follower. Then, for every information set of the leader
I ∈ Il and every partition γk ∈ ΓI there exists at most one
sequence of the follower σf ∈ rel(h) for some node h ∈ γk
such that p(σl(h), σf ) > 0.

Proof. For contradiction, let σf , σ
′
f be such different

relevant sequences for which p(σl(I), σf ) > 0 and
p(σl(I), σ′f ) > 0 and let h, h′ ∈ γk (not necessarily dif-
ferent), such that σf ∈ rel(h) and σ′f ∈ rel(h′).

Now, thanks to constraint (5) we know that there must be
a predecessor of these nodes with strictly positive value of p.
Let σ′′f be the longest common prefix of the two sequences
of the follower σf and σ′f . By construction of rel(h) we now
that σf 6= σ′f 6= σ′′f We distinguish two cases: (1) either the
first different action in sequences σf and σ′f after the longest
common prefix σ′′f is taken in the same information set, or
(2) there are two different information sets in which these
different actions are taken. The first case contradicts the as-
sumption that there are no inconsistent recommendations for
the follower. In the second case, these two information sets
must be reached either due to a different action of the leader
or chance, since σ′′f is the longest common prefix and the
first different actions in the sequences of the follower are
played in these information sets. However, this contradicts
the fact that the history for the leader is the same due to the
assumption of perfect recall, as well as the history of chance
is the same for these two nodes due to the partitioning of
ΓI .

Theorem 3. Assume a solution of the LP as described in
eqs. (9-12) such that there are only consistent recommenda-
tions for the follower. There is a SSE strategy that can be
found in polynomial time from variables p.

Proof. We need to show how p(σl, σf ) is translated to a
valid mixed strategy that corresponds to SSE. First, we show
how the strategy of the leader is built. There is only a sin-
gle relevant sequence σf ∈

⋃
h∈γk rel(h) with a strictly

positive probability in every information set of the leader
I (thanks to Lemma 1). Since the history of actions of the
leader is the same for all nodes in this information set (per-
fect recall) and thanks to the constraint (5), the value of the
positive probability is the same for each relevant sequence
of the follower (only the prefixes of σf have positive proba-
bility) for each partition γk. Therefore, constraint (11) now
ensures that the behavior of the leader is unique for all rel-
evant sequences of the follower. And so, for every informa-
tion set of the leader variables p define a valid strategy that
maximizes the expected utility of the leader and that can be
computed in the same way as in the standard sequence form
in EFGs.



For the case of the follower, there is no inconsistent rec-
ommendations by assumption; hence, for every informa-
tion set I of the follower there exists at most one action
af ∈ A(I) with p(σl, σfaf ) > 0 for some σl ∈ Σl and
σf = σf (I). By taking these actions and arbitrary actions
in information sets where there is no such action af , we ob-
tain a pure strategy for the follower. Finally, thanks to the
constraints (6–8), this pure strategy is a best response of the
follower to the strategy of the leader obtained in the previous
step.

Theorem 4. Assume a solution of the LP as described in
eqs. (9-12). The objective value of the LP is greater or equal
to the expected utility of the leader in SSE.

Proof. The theorem holds as a direct consequence of The-
orem 3. We know that in case there are no inconsistent rec-
ommendations for the follower, the value of the objective
corresponds to SSE. If we do not restrict the recommenda-
tions, the value can be only greater or equal.


