
Automatic discovery of web servers hosting similar
applications

Jan Kohout?† and Tomáš Pevný?†
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Abstract—Increasingly more popular cloud services have fre-
quently many functional parts, which makes their structure
rather complex yet its understanding improves network monitor-
ing for security purposes, traffic routing, etc. Since the structure
of third-party services is typically unknown, automated tools for
its discovery are of great need. In this work, we propose such
tool relying only on high-level statistics of servers’ usage, such
as volumes and times of interactions with the servers. Without
looking into the communication contents, the method works for
encrypted channels as well, which is experimentally demonstrated
on Dropbox service and Windows Live platform.

Index Terms—clustering, servers fingerprinting, service iden-
tification

I. INTRODUCTION

We currently see a trend of moving network services and
applications from local networks to the cloud, accessed via
a web interface. Although this at one hand simplifies IT
infrastructure and its costs, it also brings new challenges
with detecting policy violations, misuses, and attacks. This
is because network administrators have lost the direct control
over the services and typically they have a very little insight
into services’ internals.

Many contemporary services have rather complex struc-
ture, as they are composed of several sub-services fulfilling
specific tasks. The knowledge of this structure can simplify
services’ monitoring and improve security countermeasures
against their misuses. However, the structure is not typically
publicly known and its analysis by hand often includes reverse
engineering of the communication protocol [1], which is time
consuming and frequently too costly. Moreover, the rise of
popularity of the HTTPS protocol, accelerated by Snowden’s
affair, makes deep packet inspections difficult and also rules-
out any port-based identifications. Also, inferring the service’s
structure from hostnames similarities or proximities of servers’
IP addresses can be misleading, because there is no guarantee
that servers with similar hostnames (or with IP addresses from
the same subnet) run the same type of service.

This work shows how a service’s structure can be discerned
solely from high-level information such as number of trans-
mitted bytes and times of connections to servers — all being
available in HTTPS traffic. The paper is structured as follows.
In Section II, we propose compact “fingerprints” of servers

extracted from the traffic. These fingerprints are used by off-
the-shelf clustering algorithm to identify groups of similar
servers without knowing the number of groups in advance.
The discussion about the clustering algorithm is also part of
Section II. In Section III, the method is deeply evaluated on
the Dropbox service chosen due to known ground truth [1],
and on a subset of servers belonging to the Windows Live
platform. We review the related work in Section IV. Finally,
we conclude the work in Section V.

II. THE PROPOSED APPROACH

The goal of identifying groups of servers hosting same
applications or their distinct functional part (e.g., Dropbox has
dedicated servers for notification of changes and others for
serving the content), can be viewed as a clustering problem.
Using off-the-shelf clustering methods requires definition of
a similarity measure quantifying similarity of two points
(servers). Since we thrive for efficiency and scalability, we
want a server to be represented by a point in Euclidean Rd

space. This choice allows to use large variety of clustering
algorithms.

The next subsection presents how servers can be represented
in an Euclidean space Rd allowing those providing similar
services to be close to each other. The choice of the similarity
measure and the clustering algorithm is discussed in Subsec-
tion II-B.

A. Fingerprinting servers

The representation of a server, called fingerprint, was de-
signed under following constraints. First, we wanted to use
information that is easily available without significant effort
and privacy concerns which rules out deep packet inspection
or decryption of the traffic. Therefore, the data can be obtained
from proxy logs provided by systems like Squid [2] or possibly
from NetFlow-like1 traces. Second, the application can use
HTTPS meaning that most information from URLs like path,
parameters, domain names, and referrers can be missing.
Third, we avoid any features specific for a certain class of
application, as the method would not be general and could

1Using NetFlows would require redefinition of server being IP:port and
slight change of features, because flows in the NetFlow format are unidirec-
tional.



not be used without prior knowledge about the service. This
left us with relatively high-level information about each web
request to the servers of interest, namely:

1) bytes sent rup from the client to the server,
2) bytes received rdown by the client from the server,
3) duration: rtd (in milliseconds) of the request,
4) inter-arrival time rti (in seconds) elapsed between start

of the request and previous request from the same user.
All four quantities are transformed by log(1 + x) to decrease
their dynamic range. Although the information about servers’
usage might seem limited, similar information about packets
were used to classify application level protocols [3]. With
respect to the available information, a request r can be reduced
to a 4-tuple r = (rup, rdown, rtd, rti).

Server’s fingerprint relies on an assumption that statistical
distribution of requests is similar for servers running the same
application. The distribution is captured by a four-dimensional
joint soft histogram, which arranged in a vector forms the
server’s fingerprint. As the joint soft histogram is the keystone
of the proposed fingerprint, the rest of this subsection is
devoted to it.

Soft histogram: A commonly used approximation of the
joint distribution of rup, rdown, rtd, rti from a finite number
of samples is through empirical joint histogram with equal
bins. Its advantage is that it captures dependencies between all
quantities at cost of large number of bins, if the quantization
is fine. We believe that this should not be a problem because
(a) histograms are typically sparse due to the regularity of
servers usage and (b) our goal is clustering, not a classifi-
cation where we should worry about over-fitting. Moreover,
in text document analysis ([4]) sparse and high-dimensional
representations are common. The sparsity is demonstrated in
Figure 1 showing the cumulative distribution of the number
of non-zero items in fingerprints of 11500 servers under the
.com top level domain. We can see that fingerprints of more
than 95% servers have less than 5% of non-zero bins. This
also demonstrates the regularity of servers’ usage.

Common (hereafter called hard) histograms are constructed
by increasing values of bins into which samples fall irrespec-
tively how close they are to the bins’ boundaries. This strict
quantization makes histograms sensitive to small variations
(noise) in the data. In image and signal processing [5], [6]
this sensitivity is removed by using so-called soft histograms,
where each sample updates two (in a one-dimensional case)
closest bins by values proportional to their distance. In the
simplest form, sample’s contribution to two nearest bins de-
pends linearly on distance to them, which corresponds to the
triangular filters used in signal processing [6].

The situation is depicted in Figure 2, where a one-
dimensional histogram is updated by a sample u = 2.6. Its two
nearest bins centred in buc = 2 and buc+ 1 = 3 are updated
by 1− (u− buc) = 0.4 and u− buc = 0.6, respectively.

Soft histograms can be extended to m dimensions with
bins centred at integer lattice points [b1, ..., bm] ∈ {0, ..., n}m,
where n is an upper bound on values to be inserted to the
histogram. Updating the m-dimensional soft histogram with a
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Fig. 1. Cumulative distribution function (CDF) of the number of non-zero
bins in fingerprints of totally 11500 servers found under the .com TLD. The
fingerprints were extracted from 5 days of continuous traffic. The CDF plot
demonstrates that fingerprints are typically very sparse — the total number
of bins in a fingerprint was set to 114 = 14641, thus more than 95% of
fingerprints have less than 5% of non-zero bins.
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Fig. 2. Example of updating a one-dimensional soft histogram with value
2.6. Filters influencing the contribution are highlighted.

tuple (u1, u2, . . . , um) means first calculating indices li and
contributions vi to “left” bins as

li = buic, vi = 1− (ui − li), i ∈ {0, . . . ,m},

and then updating all bins centred in vertices

{(l1 + i1, . . . , lm + im)|(i1, . . . , im) ∈ {0, 1}m}

with values
∏m

j=1 v
1−ij
j (1− vj)ij . Finally, the soft histogram

is L1-normalized to approximate the joint probability distri-
bution.

Based on values observed in web requests in our experi-
mental data, we have found n = 10 to be sufficient implying
the total number of bins to be 114 = 14641. The final server’s
fingerprint is then the soft histograms arranged in a (n+1)m-
dimensional column vector.

B. Fingerprints clustering

Clustering servers’ fingerprints follows the usual clustering
steps. First, similarities between all fingerprint pairs are cal-
culated, then optionally τs smallest similarities are set to zero
to accentuate true clusters, and finally the chosen clustering
algorithm is applied. The steps are detailed below.



Similarity measure: In experiments presented in Sec-
tion III we have evaluated two similarity measures between
fingerprints x1 and x2. sc is the usual cosine similarity
frequently used in document analysis while se is based on
Euclidean L2 distance scaled to [0, 1] such that both similarity
functions have the same range. The scaling leverages the fact
that the upper-bound on L2 distance between x1 and x2 is

√
2,

because L1 norms of the fingerprints are 1 and their items are
non-negative. These similarities are formally defined as

sc(x1, x2) =
xT1 x2

||x1||2 · ||x2||2
(1)

se(x1, x2) =

√
2− ||x1 − x2||2√

2
(2)

Discarding low similarities: Optionally, τs percent of the
lowest similarities are set to zero making the respective servers
completely dissimilar. Although this filtering might decrease
noise and accentuate the true clusters, it can also discard too
much information rendering the true clusters unrecognisable.
The impact of filtering on the accuracy of clustering is
investigated in Section III.

Clustering algorithm: Any clustering algorithm accepting
either feature vectors from Rd or a similarity matrix can be
used. Nevertheless, clustering algorithms are not the same and
results can significantly differ. The clustering algorithm of our
choice is the Louvain method [7] designed for discovering
communities in graphs. The vertices of the graph which is
passed to the Louvain clustering represent servers’ fingerprints
while the similarity measures sc or se determine weights of
the edges between the vertices. The filtering described in
the previous paragraph has an effect of removing edges. An
advantage of the Louvain method is the optimisation of the
number of clusters, which is useful for applications when the
desired number of clusters is not known beforehand. However,
we again emphasize that servers’ fingerprints are general and
other clustering algorithms can be taken to account, e.g., those
based on spectral clustering [8].

III. EVALUATION

The efficacy of the proposed method for discovering groups
of servers hosting same applications is evaluated in detail on
the Dropbox service, where we want to identify its separate
functional parts. Dropbox has been chosen because the ground
truth exists thanks to [1] and the majority of communication
is encrypted by using HTTPS. Thus, it is a good example
of a service into which the insight is very limited unless
the communication is decrypted, which has been done in [1].
This evaluation is presented in Subsection III-A. In Subsec-
tion III-B, we show the results of clustering of servers that
belong to the Windows Live platform to demonstrate that our
method can be used for analysis of various types of services.
Despite that we had no ground truth for these data, the brief
analysis of the produced clusters shows promising results as
well.
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Filtering level τs
Similarity 0% 20% 50% 70%

so
ft L
ou

v. Cosine 0.947 0.947 0.947 0.443
Euclidean 0.723 0.732 0.732 0.948

Sp
ec

t. Cosine 0.887 0.853 0.860 0.788
Euclidean 0.793 0.582 0.751 0.746

ha
rd L

ou
v. Cosine 0.740 0.945 0.441 0.310

Euclidean 0.722 0.723 0.723 0.933

Sp
ec

t. Cosine 0.849 0.822 0.138 0.035
Euclidean 0.786 0.489 0.653 0.699

TABLE I
VALUES OF ADJUSTED RAND INDEX COMPARING SIMILARITY BETWEEN
THE GROUND TRUTH CLUSTERING OF THE DROPBOX SERVERS AND THE
CLUSTERING PRODUCED BY OUR METHOD FOR DIFFERENT SIMILARITY

MEASURES, LEVELS OF FILTERING AND TYPES OF HISTOGRAM (HIGHER IS
BETTER, MINIMUM IS -1, MAXIMUM IS 1).

A. Dropbox analysis

For the purposes of the evaluation, we extracted fingerprints
of 188 servers under the dropbox.com domain from 5 days
of continuous web traffic from a larger company with approx-
imately 10000 active users in the network, obtaining 17000
requests per server on average. The data were collected during
the year 2013. 95% of servers fell into 4 categories out of 11
identified in [1], namely: clientX.dropbox.com (meta
data management), dl-clientX.dropbox.com (client
storage), dl-debugX.dropbox.com (exceptions back-
traces) and notifyX.dropbox.com (notifications about
changes), where the letter X stands for one or more digits
in the hostname. Hereafter we refer to these four groups of
hostnames as ground truth groups.

The quality of clustering was measured by Adjusted Rand
Index (ARI) ([9], [10]), which is a general measure taking
value in the range [−1,+1] evaluating agreement of two
clustering solutions (higher value means better match of the
solutions). In our case, we always compared outcome of an
evaluated clustering method to the ground truth. For details
about calculations of ARI we refer the reader to the original
publications.

Below we compared the Louvain and the spectral clustering.
As the spectral clustering needs the number of clusters to be
supplied in advance, it was always set to the correct number.

The main bulk of experimental results is shown in Table I
comparing ARI for all combinations of Louvain and spectral
clustering, cosine and Euclidean similarities, and 4 different
levels of filtering τs ∈ {0%, 20%, 50%, 70%}. Supplemented
are results for hard histograms for comparison. The results
show superiority of the Louvain clustering over the spectral.
Also the cosine similarity (1) gives consistently better results
than the Euclidean similarity (2) and it is oblivious to the
filtering level τs (unless most of the similarities are discarded).
The advantage of soft histograms advocated in Subsection II-A
over the traditional hard ones is also apparent. We point out
that the best combination of the Louvain clustering and cosine



Cluster ground truth group Precision Recall

A clientX 1.00 1.00
B dl-clientX 0.86 1.00
C dl-debugX 1.00 1.00
D notifyX 1.00 1.00

TABLE II
DOMINANT TYPES OF DROPBOX SERVERS IN THE FOUR LARGEST

CLUSTERS.

similarity is virtually parameter free, as the number of clusters
is discovered automatically.

To illustrate how well the obtained clusters represent func-
tional parts of Dropbox, Figure 3 shows marginal proba-
bility distributions of all four modeled quantities estimated
from fingerprints in four largest clusters obtained by Louvain
clustering with cosine similarity and τs = 0%. Titles of
groups correspond to the most dominant part of Dropbox
service in the cluster. We can see that requests to notifyX
servers have zero uploaded bytes, nearly constant number of
downloaded bytes, they are periodic and of the same (long)
duration. This well corresponds with notify servers informing
clients about changes by implementing the push mechanism.
Contrary, connections to dl-clientX are aperiodic with
relatively large amounts of uploaded and downloaded bytes.
This is caused by the fact that these servers are used to
upload and download content to/from the storage. Servers in
dl-debugX are used to send debug data and requests to them
have long durations like requests to notifyX, but unlike
those they have non-zero uploaded bytes and are aperiodic.
The higher volume of transmitted bytes can be caused by the
long duration of requests. Finally, requests to clientX have
the shortest durations among all groups and in comparison to
requests to dl-debugX and dl-clientX the amount of
transferred bytes is smaller. According to [1], these servers
handle meta-data but the exact protocol is unknown to us.

The titles in Figure 3 were inferred from dominant ground
truth labels within. To illustrate the purity of clusters, Table II
shows clusters’ precisions and recalls. The precision is defined
as the ratio of dominant ground truth labels within the cluster
to its size. Similarly, the recall is defined as the ratio of
the dominant ground truth labels within the cluster to the
total number of those labels in the entire dataset. We can
see that all clusters are pure and servers with the same
functionality are in one cluster. The only exception is cluster
B (dl-clientX) containing some services from remaining
5% of servers providing other Dropbox functionality.

The cosine similarity graph of servers is visualized in
Figure 4 with the help of Gephi [11] tool and the Force Atlas 2
drawing algorithm [12]. This algorithm attracts nodes with
high similarities towards each other while separating pairs of
nodes with low similarities. The graph supports conclusions
drawn above – despite that marginal distributions of the
features for the dl-debugX (blue) and dl-clientX (red)
servers are more similar, nodes representing servers from the
same ground truth groups are attracted together because of

high similarities of servers inside both of the ground truth
groups. Therefore, the clustering algorithm is able to separate
these servers correctly.

B. Windows Live analysis

The ability of our method to distinguish servers hosting
different applications within a service which is different from
Dropbox is demonstrated in Figure 5. The figure shows a
cosine similarity graph of 310 servers revealed under the
live.com second level domain (former Windows Live ser-
vices). The data set used for this experiment was the same
as the one which was used for the Dropbox analysis. Again,
the graph was visualised with help of the Force Atlas 2
algorithm and five largest clusters (containing 94% of all
servers) discovered by the Louvain method are highlighted
with different colors (red, blue, green, purple, and yellow).
For these servers, we did not have the exact ground truth
like in the case of Dropbox, thus, the detailed analysis of
the method’s performance could not be performed. However,
as shown in Figure 5, the servers form several well-shaped
clusters which suggests that these clusters could gather servers
running different applications. Indeed, the analysis of host-
names belonging to servers in the five largest clusters revealed
that 76% of servers in the blue and in the red cluster have a
word ”mail” in their hostnames. This is a good evidence that
these clusters are likely to represent servers engaged in mail
services of the Windows Live platform. On the other hand,
99% of servers in the green cluster and in the purple cluster
contain a word ”messenger” in their hostnames. This points
out that these two clusters gather servers handling the instant
messaging service (Windows Live Messenger). Similarly, 67%
of servers in the yellow cluster have a ”storage” substring
in their hostnames. Thus, we can assume that the servers from
the yellow cluster are somehow involved in storing users’ data.

This brief analysis of the obtained results shows that our
method is able to successfully distinguish servers running dif-
ferent applications in general which makes it readily applicable
to network traffic analysis in practice.

IV. RELATED WORK

The goal of this work resembles identification of the type
of communicating application from the network traffic with-
out inspecting the communication’s contents. Ref. [3] builds
classifiers for different application layer protocols using only
information about packets sizes and timings. Contrary to ours,
their work uses TCP layer data and the classifiers are trained to
identify previously known protocols. Ref. [13] also classifies
application protocol from sizes and inter-arrival times of
packets. We differ to them as we do not use any knowledge
about what we will cluster and we focus on servers rather
than flows. Ref. [14] demonstrates a classifier identifying web
mail traffic over HTTPS without content inspection. As the
focus is on identification of web mail traffic, the proposed
representation is tightly fit to that problem (e.g., assumes
proximity between web mail servers and known legacy mail
servers in the IP address space) and cannot be easily ported
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Fig. 3. Marginal probability distributions of the four observed features, estimated from fingerprints of Dropbox servers found in the four largest clusters.

Fig. 4. Cosine similarity graph for the Dropbox servers. Servers from the four
ground truth groups are highlighted by different colors: clientX servers are
purple, dl-clientX servers are red, dl-debugX are blue, and notifyX
servers are green. The remaining 5% of servers are grey.

to other types of traffic. In [15] network hosts are associated
with different application types to classify the traffic of these
hosts but the method also works at the transport layer.

The core idea of overlapping bins in soft histograms has
been applied in computer vision, e.g., in [5], [16] or [17].
However, we are not aware of any application of soft his-
tograms for modelling network traffic.

V. CONCLUSION

This paper has demonstrated that a highly accurate iden-
tification of groups of servers running the same parts of a

Fig. 5. Cosine similarity graph for the servers under the live.com second
level domain. Five largest clusters discovered by the Louvain method are
highlighted with color, the red cluster and the blue cluster contain servers
probably involved in mail-related services while the green cluster and the
purple cluster contain servers that handle instant messaging. The yellow
cluster gathers servers related to ”storage” services. The remaining nodes
(6%) are grey.

service is possible without any prior knowledge about the
service and without inspecting contents of packets. The core
idea of the method is to derive servers’ fingerprints from sizes,
durations, and times of requests to them. These fingerprints
are then clustered to identify groups of servers that are
hosting similar applications. With the Louvain clustering, the
method is unsupervised, parameterless, and directly applicable
to encrypted traffic.



The method’s performance was analyzed in detail on the
task of identifying separate parts of the Dropbox service for
which the ground truth was available. The analysis showed
that the method is able to achieve results that highly match the
correct solution determined by the ground truth. Furthermore,
we demonstrated the proposed method by identifying groups
of servers involved in the same functional parts of the former
Windows Live platform with promising results, too.

We believe that the presented method can become basis
of various tools used for monitoring and analysis of network
traffic, e.g., as a part of intrusion detection systems (IDS)
involved in detecting attacks and misuse of services. Under-
standing services’ structure might improve behavioral models
used in an IDS. In this way, the chance of detecting non-
standard usage patterns of a service (which can indicate the
malicious activity) can be significantly increased.
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[6] J. G. Proakis and D. G. Manolakis, Digital Signal Processing (3rd Ed.):
Principles, Algorithms, and Applications. Prentice-Hall, Inc., 1996.

[7] V. Blondel, J. Guillaume, R. Lambiotte, and E. Mech, “Fast unfolding
of communities in large networks,” J. Stat. Mech, 2008.

[8] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Anal-
ysis and an algorithm,” in Advances in neural information processing
systems, 2001.

[9] W. Rand, “Objective criteria for the evaluation of clustering methods,”
Journal of the American Statistical Association, 1971.

[10] L. Hubert and P. Arabie, “Comparing partitions,” Journal of Classifica-
tion, 1985.

[11] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An open source
software for exploring and manipulating networks,” 2009.

[12] M. Jacomy, S. Heymann, T. Venturini, and M. Bastian, “Forceatlas2,
a continuous graph layout algorithm for handy network visualization,”
Medialab center of research, 2011.

[13] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli, “Traffic classification
through simple statistical fingerprinting,” SIGCOMM Comput. Commun.
Rev., 2007.
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