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Abstract. The main objective of anomaly or outlier detection algo-
rithms is finding samples deviating from the majority. Although a vast
number of algorithms designed for this already exist, almost none of them
explain, why a particular sample was labelled as an anomaly (outlier).
To address this issue, we propose an algorithm called Explainer, which
returns the explanation of sample’s differentness in disjunctive normal
form (DNF), which is easy to understand by humans. Since Explainer
treats anomaly detection algorithms as black-boxes, it can be applied in
many domains to simplify investigation of anomalies.

The core of Explainer is a set of specifically trained trees, which we call
sapling random forests. Since their training is fast and memory efficient,
the whole algorithm is lightweight and applicable to large databases,
data-streams, and real-time problems. The correctness of Explainer is
demonstrated on a wide range of synthetic and real world datasets.

Keywords: Anomaly explanation, decision trees, feature selection, ran-
dom forest

1 Introduction

The main objective of anomaly (outlier) detection1 algorithms is finding samples
deviating from the majority of data. Because anomalies are, by definition, rare
and they can be very different from each other, the problem poses different issues
and challenges than the supervised classification. Despite them, anomaly detec-
tion algorithms were already applied successfully in the network security [10],
bioinformatics [15] or fraud detection [2]. With the huge amount of unlabelled
data generated in many domains, more and more attention is directed to the
anomaly detection, as it helps to identify interesting samples. Consequently, a
plethora of algorithms has been already proposed, some of them applicable only

1 In this paper the term anomaly is used for outliers as well, because the algorithm
can be used to explain both.
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to a specific domain, while other being general. A good overview of the state of
the art is in [1].

Despite the importance of an anomaly detection and the number of proposed
algorithms, very few works ever mentioned explanation of the decision. To our
best knowledge, there have been only two works [6, 13] providing reasons for
classifying sample as an anomaly. This is rather surprising, because identification
of an anomaly is usually followed by a deeper investigation. Understanding the
reason, why and how this sample differs from the rest, simplifies this further
investigation, helps to better separate true anomalies from false alarms and
reduce overall costs.

This paper proposes an algorithm (called Explainer), which explains why
a sample identified as an anomaly by some algorithm is different from others.
Explainer is based on a set of specifically trained decision trees, which we call
sapling random forest (SRF) due to their small size. For each anomaly Explainer
returns features together with rules on them describing why this sample has been
identified as an anomaly. The main idea behind it is to view the explanation
problem as a feature selection / classification problem. Specifically, the goal is to
find features in which the anomalous sample is best separated from the rest. The
reason for choosing decision trees is due to their simplicity, greedy approach, and
interpretability of individual decision rules.

One of the main Explainer’s advantages is that the anomaly detection al-
gorithm used to find anomalies is treated as a black-box. Therefore, Explainer
can be used as an additional step for a vast majority of the state of the art
algorithms. Moreover, Explainer is very lightweight because the complexity of
growing decision trees is very small. This allows it to be used effectively on large
databases with a minor memory requirements, on data-streams and to provide
explanations in the real time.

Chawla and de Vries [7] divide outlier detection algorithms into two groups:
local and global ones. The local algorithms are considered more general, be-
cause every global anomaly is local in some scope, but not vice versa. By the
similar reason, local anomalies should be more difficult to interpret. Hence all
experiments presented here use local outlier factor (LOF) [5] to identify anoma-
lies, to show that Explainer can explain local as well as global anomalies. The
Explainer’s effectiveness is demonstrated on the large number of problems from
UCI repository[3]. The experimental results show that the Explainer successfully
identifies features in which a given sample deviates from the majority. The large
number of different problems, used in the evaluation, proof its generality.

The rest of this work is organized as follows. The next section briefly re-
views related work. Section 3 describes the Explainer, which is experimentally
evaluated in Section 4. Section 5 concludes the paper.

2 Related work

To our best knowledge, there have been only two works addressing not only
identification of anomalies (outliers), but as well, their explanation. Knorr et al.
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[13] focused on what kind of knowledge should be extracted from outliers and
provided to user. Strong and weak outliers were defined and searched within
data by distance-based algorithms described in detail in [12].

Dang et al. [6] presented an algorithm identifying and explaining anomalies.
The algorithm starts by selecting a set of neighbouring samples, that are pre-
sented to a fisher linear discriminant classifier to seek for an optimal subspace,
in which a detected outlier is well separated. Notice, that the identification of
a subspace in which the outlier is well detectable, is an essential step in the
explanation. The difference of our work is that Explainer is general in the sense
that it can be used with many different anomaly detection algorithms and it also
provides rules explaining the anomalous sample.

As mentioned above, the closest task to the explanation is the identification
of subspaces in which the anomaly is easily detectable. In search for anomalies,
He et al. [11] examines each feature separately whereas [9] tests all combination
of two dimensions. Muller et al. [14] goes even further by identifying relevant
subspaces assuming that outliers can only exist in those with non-uniform dis-
tributions. Although all above approaches identify subspaces in order to better
detect anomalies, none of them considered the problem of anomaly explanation
solved here.

3 Interpreting anomalies

Lets have set of samples X =
{
xi ∈ Rd|i ∈ {1, . . . , l}

}
classified by an anomaly

detection algorithm into two classes: a class with normal samples Xn and with
anomalies X a. By the nature of the problem, it is expected that |X a| � |Xn|.
Explainer’s goal is to explain, how a particular sample xa ∈ X a, deemed as an
anomaly, differs from the rest. Explainer does not have any knowledge about the
anomaly detection algorithm — it simply treats it as a black-box and explains
its output.

To answer how xa ∈ X a differs from the set of normal samples Xn, Explainer
trains a binary decision tree separating xa from Xn. Rules along the path from
the root node to the leaf with xa are extracted and returned in the disjunctive
normal form (DNF), which is easily understandable by a human.

The training set for a binary decision tree G = {xa ∪ Xn} (further called
a grow set) is extremely imbalanced, as one class contains only the anomaly
and the second one contains all (or a subset of) normal samples. Under usual
conditions, this situation would lead to overfitting to xa, but not in this case,
as the goal is to explain xa and not the whole set of anomalies X a. Moreover,
this imbalance of the grow set causes the decision trees to be of very low height,
typically 1–3, resulting in short and apt explanations. Because grown trees are
of small height, they are called saplings rather than trees.

Explainer is summarized in Algorithm 1. The rest of this section discusses its
individual parts in detail, namely: two strategies of creating grow set G; review of
the training algorithm for binary decision trees; and how the disjunctive normal
form is extracted from the tree(s).
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Algorithm 1 Summary of the Explainer algorithm

y ← LOF (data)
for all data(y ==anomaly) do

G← createGrowSet(size,method)
T ← trainTree(G)
SRF ← T
DNF ← aggregateTrees(SRF )

end for

3.1 Creating the grow set

A basic grow set G contains the anomaly xa in one class and all normal samples
Xn in the other. But according to our experience the full Xn is usually not
needed and a small-size subset is sufficient. This finding is important, because
the computational complexity depends on the size of the grow set. Moreover, a
small size of the grow set allows to explain anomalies in data-streams by keeping
only k lastly-observed normal samples in the grow set.

The first strategy of creating grow sets is to select k nearest neighbours of xa

from Xn. This strategy is sensible for local algorithms, as according to [7] they
are more general than algorithms detecting global anomalies. The drawback of
this strategy is a computational complexity, which is O(d · |Xn| log |Xn|).

The second strategy is to select k samples randomly from Xn with uniform
probability. The advantage of this approach is a possibility to generate more
than one grow set per anomaly by repeating the sampling process. More grow
sets lead to more saplings per anomaly and to more robust explanation, but at
the expense of the more complicated aggregation of rules extracted from them
(see Subsection 3.3). The complexity of this approach is trivial being O(|Xn|)
with a very low constant hidden inside the O(|Xn|) term.

Both strategies are experimentally compared in Section 4, together with the
influence of the grow set size and the number of saplings per anomaly.

3.2 Growing saplings

A grow set G is used to train a binary decision tree by the standard algorithm for
Classification and regression trees (CART) [4] to separate xa from the rest. The
algorithm for training CART [4] is a greedy algorithm, where in every iteration
the leaf node with the highest Gini index is being split and becomes an internal
node with two leave nodes. Gini index is proportional to the probability of error
of samples reaching a given leaf. It is calculated as

Gi = 1− p2a − p2n, (1)

where pn and pa is the probability that sample reaching the leaf is normal and
anomaly respectively. Probabilities pn and pa are estimated using grow set G.
Because G contains only one anomaly, Gini index is non-zero only for at most
one leaf, which is the one with the anomaly.
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The standard procedure, to find the splitting function h of a new internal
node, is maximizing an information gain over the hypothesis space H as

arg max
h∈H

−
∑

b∈{L,R}

|Sb(h)|
|S| H(Sb(h)), (2)

where S is the subset of G reaching the leaf being split, SL(h) = {x ∈ S|h(x) = +1}
and SR(h) = {x ∈ S|h(x) = −1} , and H(S) is an entropy of S. In Appendix it
is shown that (2) is equivalent to

arg min
h∈H
|Sa(h)|, (3)

where Sa(h) is one of {SR(h),SL(h)} containing the anomaly. Criteria (3) is
intuitive as it chooses the hypothesis where the leaf with the anomaly has the
least normal samples.

The selection of a hypothesis space H is important, as the decision rules
should be understandable by human. Explainer uses set of decision stumps H =
{hj,θ|j ∈ {1, . . . , d}, θ ∈ R} defined as

hj,θ(x) =

{
+1 if xj > θ

−1 otherwise,

where xj is the jth feature of x. This choice allows easy explanation of the rules
in the form “jth feature is greater / smaller than θ”.

The node splitting procedure is repeated until all nodes are pure, which
means that the anomaly is the only sample in its leaf.

3.3 Explaining the anomaly

Once the tree T is grown, Explainer proceeds to explain the anomaly xa. Let
hj1,θ1 , . . . , hjt,θt be the set of decisions taken in inner nodes on the path from
the root to the leaf with the anomaly xa. Then xa is explained by disjunctive
normal form (DNF) as

C = (xj1 > θ1) ∧ (xj2 < θ2) ∧ . . . ∧ (xjt > θt), (4)

which is the output of the algorithm. This DNF can be read as “the sample is
anomalous because it is greater in feature j1 and smaller in feature j2 and . . .
than majority (or nearest neighbor) samples.” Because resulting trees are very
small, the explanation is compact.

The situation is more difficult, if more trees per anomaly have been grown, as
each tree provides one DNF of type (4). Using more than one tree per anomaly
improves robustness for grow sets created by uniform sampling. The problem
is that returning set of all DNFs, D, is undesirable, as the primary objective
— explanation of the anomaly to a human— would not be met. Hence, the
algorithm aggregates all DNFs in D to one compact DNF. The aggregation is
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done by dividing hypotheses into groups according to features and relations and
then selecting the most discriminative rule from each group.

Let the indicator function I(j ∈ h,R) be one, if the decision rule h is of type
xj < θ for some theta, and zero otherwise. Similarly, the indicator function I(j ∈
h, L) is one, if h is of type xj > θ. Notice the disagreement in the size/dimension
with the hypothesis space H used for the training of decision trees. Need for
this extension is caused by the presence of both types of decision rules in DNF.
By using the indicator function, decision rules used in D can be divided into at
most 2d groups according to the feature and the relation type {<,>}.

To remove decision rules introduced by an unfortunate selection of grow set,
the algorithm calculates groups sizes as

r2j =
∑
C∈D

∑
h∈C

I(j ∈ h, L),

r2j−1 =
∑
C∈D

∑
h∈C

I(j ∈ h,R).
(5)

Based on {rj}2dj=1 the algorithm discards groups of low importance by sorting
them in descend order according to rj , and then using only the first k groups
such, that their cumulative frequency is smaller than a threshold τ, which we
recommend to be 0.95 or 0.99. Using adopted notation k is determined as

k = arg min
k

1∑2d
j=1 rj

k∑
j=1

rj > τ, (6)

where it is assumed, that rj is sorted to simplify the notation. We have also
investigated the complementary approach, where groups are selected, if they
were used with a frequency higher than a specified threshold. But the presented
strategy based on the cumulative frequency showed more consistent results in
our experiments.

Once the set of groups with decision rules is selected, the most strict rule
one from each group is picked. For example, for a group HRj with decision rules

of type < on jth-feature the chosen hypothesis is

hRj = arg min
h∈HR

j

θh, (7)

where θh is the threshold used within the decision rule h. For decision rules with
relation > the minimum in (7) is replaced by maximum. Now, the algorithm
is left with at most 2d decision rules which are grouped to disjunctive normal
form (4) and presented as an output. The typical size of aggregated DNF is not
bigger than 3 decision rules, which is, in our opinion, quite understandable.

3.4 Complexity of the explanation

The complexity of training one decision tree is O(min{|G| log |G|, d2|G|}), where
d is the number of features. The first part, |G| log |G|, comes from training the
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CARTs [4], the second part, d2|G|, comes from the fact that the tree can have at
most 2d decision rules and the complexity of finding one rule is O(d|G|). If more
trees are grown, the complexity grows appropriately. The complexity of grow set
selection by uniform sampling is linear with respect to the size of the set of nor-
mal samples Xn. The complexity of grow set selection by the nearest-neighbour
method is O(d · |Xn| log |Xn|). Based on the experimental results the uniform
sampling method, which is less expensive, is recommended. Finally, the complex-
ity of aggregating multiple DNFs is linear with respect to the number of decision
rules within, which is typically small. To summarize, Explainer’s complexity with
grow samples by uniform sampling is O(d ·k ·min{|G| log |G|, d2|G|}+ |Xn|) with
d being the number of features and k being the number of grown trees. Because
the size of the grow set can be small, as shown later, the total complexity of the
algorithm is low as well.

4 Experiments

4.1 Experimental protocol

The demonstration of correctness of the anomaly explanation without human
intervention is difficult, as true rules, explaining the anomaly, are not known.
To prove that our method works correctly, we have used it to select features
in which the anomaly is detectable. The rationale is that if the anomaly is
explained correctly, it should be mostly deviating in a sub-space spanned by
selected features.

Experiments have been performed on 37 datasets, 36 classification problems
from UCI repository [3] and one created by us from a network intrusion detection
domain.2 In every dataset, the class with the highest number of samples was
used as normal, and all samples from other classes were used as anomalies. In
every repetition of the experiment, the evaluation set contained 5% anomalies.
Denoting the number of normal samples as l, the evaluation set was created by
selecting 0.66 · l samples randomly from the normal class and adding 0.05 ·0.66 · l
of anomalies from the other classes. The local outlier factor (LOF) algorithm [5]
was used to identify anomalies, due to its popularity and identification of local
outliers, which are more difficult to detect than global ones [7]. Consequently,
it can be expected, that explaining local outliers should be more difficult as
well and therefore differences between nearest-neighbour and uniform sampling
approaches of grow set construction would be more pronounced.

In every repetition of the experiment, LOF has been used to identify anoma-
lies in an evaluated dataset. In compliance with [5], the sample was deemed to
be an anomaly if its outlier score was greater than 2. Then all identified anoma-
lies have been explained by Explainer and the set of relevant features has been

2 The dataset for network intrusion detection was designed to detect Command and
Control channels in a university network. The computers infected by malware have
unusual persistent connection to remote server(s), which should be an outlier with
respect to other persistent connections.
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extracted. Finally, LOF has been used again to identify anomalies within a sub-
space spanned by the selected features. If Explainer is correct, the accuracy of
LOF executed on the selected sub-space should be similar or even better than
that executed on a full space. The accuracy has been measured by an area under
ROC curve (AUC), which is a popular, threshold-agnostic performance measure
used in anomaly detection.

The extensive experimental validation has produced vast number of results,
which if presented in tables would certainly clog the paper. Hence the most
important results are deferred to the appendix in Table 1, and comparison of
different methods / settings is done visually as follows. AUCs of each method
from all 37 problems were plotted in a sorted order. Consequently the problem
numbers for different curves do not correspond, but the better method has curve
above the others. This type of comparison is consistent with [8] claiming that
methods should be statistically compared over different problems.

4.2 Experimental results

Figure 1a shows AUCs of anomaly detection by LOF that uses all features (de-
noted “all features”) serving as a baseline. The same figure also shows AUC of
LOFs operating on a sub-space spanned by features used to explain anomalies
identified by baseline LOF, where grow sets of size 20 were created by random
and k-nearest neighbour method (denoted “LOF rnd” and “LOF knn” respec-
tively). If baseline LOF identifies false anomalies, the explanation algorithm ex-
plains normals and the accuracy of “LOF rnd” and “LOF knn” would be worse
than that of “all features”. To observe this, the Explainer algorithm was used to
explain true anomalies and corresponding subspaces were evaluated as previously
(denoted “GT rnd” and “GT knn” depending on the grow set construction).

Figure 1a shows that anomaly detection in subspaces identified by Explainer
is more accurate that anomaly detection in the full space. This means that de-
tected anomalies were explained correctly, as removing non-informative features
improves accuracy of anomaly detection methods. On some problems, namely li-
bras, sonar, madelon, and both waveforms, the Explainer could not be executed,
as LOF has not identified any anomalies. On 18 out of 32 problems, accuracies
of LOF operating on subspaces identified by the Explainer were better than
the “baseline”. The biggest performance drop was observed on synthetic control
chart and isolet. The drop was caused by errors of LOF which has not identified
correct anomalies (recall that outlier score has to be greater than 2). Indeed,
if explaining algorithm was executed with ground truth labels, AUC of LOF
increased as if all features were used and many times even better.

The dataset with anomalies most difficult to explain was multiple-features,
where AUC on sub-spaces of explaining features were always lower. We believe,
it is caused by the curse of dimensionality, as it is impossible to select correct
features out of 649 based on 7 samples, even if they are identified and explained
correctly. There is simply too much noise and there is always going to be other
features capable of explaining the anomaly.
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Fig. 1: Left figure shows AUCs of anomaly detection by LOF that uses all features
(denoted “all features”) together with AUC of LOFs operating on a sub-space
spanned by features used to explain anomalies identified by baseline LOF (cap-
tioned “LOF rnd” and “LOF knn” depending on the type of grow set). Curves
denoted as “GT rnd” and “GT knn” corresponds to LOF on a sub-space spanned
by features used to explain true anomalies.
Right figure shows the number of features in the problem and the number of fea-
tures used to explain true anomalies (problems in all three curves correspond).

From Figure 1a we can also observe that uniform sampling approach to grow
set selection generally gives better results than k-nearest neighbour based one.
This is very important, because, as already mentioned in Subsection 3.4, the
complexity of nearest neighbour search is much higher than the complexity of
uniform sampling. Moreover, this opens door to applications on data-streams,
as only couple of the most recently observed normal samples should be sufficient
for grow sets construction. From these results we can also conclude that (i) in
real-world datasets detectable anomalies are usually global, and (ii) the grow
sets made by uniform sampling are more diverse than the nearest neighbour
grow sets.

Figure 1b shows the number of features used in decision rules, which explain
anomalies identified by LOF with uniform and nearest neighbour grow sets. We
can observe, that the nearest neighbours grow set results in smaller number of
selected features. This supports the above conjecture that random grow sets are
more diverse.

4.3 Sensitivity to parameters

Explainer is controlled by two parameters: size of the grow set and the number
of trees grown per one anomaly. Note that the latter parameter applies only in
the case of uniform sampling, because nearest neighbours are deterministic.

Figure 2 shows AUCs on sub-spaces identified by Explainer for the grow
set sizes {2, 5, 10, 20, 40, 80} created by the uniform sampling and the k-nearest
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Fig. 2: Figures show AUCs of anomaly detection by LOFs, operating on sub-
space spanned by features used to explain anomalies identified by baseline LOF,
for different grow set sizes. Explainer used for results in Left and Right figures
utilized nearest-neighbour and uniform sampling grow sets respectively.

neighbour. As expected, the higher the number of samples in grow sets, the better
the results. Nevertheless, we can observe that once the grow set reaches size 20,
further increasing its size yields negligible difference for the most problems. The
two samples Kolmogorov-Smirnov test on hypothesis that grow sets of size 80 and
20 produce results from the same distribution was not rejected with p-values 0.98
(uniform sampling) and 0.97 (nearest neighbours). This result is again important
for explaining anomalies in data-streams, because the history of normal samples
can be small.

The second parameter — the number of trees grown per anomaly — is
marginally important. Figure 3 shows, that if anomalies were identified cor-
rectly (using ground truth) the improvement by growing multiple trees, is very
small. On the other hand if anomalies identified by LOF were explained, we can
observe an improvement by repeating the explanation with different grow sets.

Finally, the threshold τ on dropping superfluous decision rules (features) can
be treated as third parameter, but it has only a minor impact on result when
set reasonably. Based on our experience, we recommend its value to be 0.95 or
0.99 as mentioned in Section 3.3.

5 Conclusion

This paper introduced a novel approach, to explain why an anomalous sample
is anomalous, called Explainer. It is designed to help humans better understand
anomalies and to simplify and speedup their confirmation whether the anomaly
is true or false. The explanation returned in disjunctive normal form is typically
short having 2–3 atoms and it can be read as “the sample is anomalous because
it is greater in feature j1 and smaller in feature j2 and . . . than majority (or
nearest neighbor) samples.”
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Fig. 3: Figures show AUCs of anomaly detection by LOFs, when multiple trees
were trained per sample. Curves on the left figure shows AUCs counted when
ground truth was provided and the right figure shows AUCs counted on sub-
space spanned by features used to explain anomalies identified by baseline LOF.

To demonstrate Explainer’s correctness, an accuracy of the Local Outlier
Factor using the full set of features and using the subset of features, used within
explanations of detected anomalies, were compared. If Explainer works correctly,
then accuracies of both should be approximately equal. Indeed, this behavior has
been observed on a wide variety of problems, providing the prior detection of
anomalies was correct.

Since to explain a single anomaly Explainer requires low number of normal
samples (usually 20 was sufficient), it is well suited for data-streams. Moreover,
its low computational complexity allows it to operate in real-time.

In a future work, we would like to focus on clustering anomalies together
according to their explanations and test Explainer with different anomaly de-
tectors.
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Appendix

A. proof of equivalence (2) and (3)

In Subsection 3.2 it was claimed that the usual criteria to select splitting rule in
decision trees

arg max
h∈H
−

∑
b∈{L,R}

|Sb(h)|
|S| H(Sb), (8)

is equivalent to minimizing the number of training samples reaching the leaf with
the outlier, i.e.

arg min
h∈H
|Sa(h)|,

where Sa(h) denotes set of training samples reaching the leave with outliers.
For the brevity, the explicit dependency of Sa on h is skipped below as it is
considered to be clear from the context.

Recall that the particularity of the grow set is that it contains only one
anomalous sample. Therefore after the node is split, there will be always at least
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one pure node (with normal samples) with entropy of reaching training samples
set H(Sn) = 0. Hence, Equation (8) simplifies to

arg min
h∈H

|Sa|
|S| H(Sa).

Because the size of set of training samples reaching the node being split S is
constant with respect the split rule h, it can be skipped and the optimization
term can be simplified to

arg min
h∈H

|Sa|H(Sa) =

= arg min
h∈H

− [− log2 |Sa|+ (|Sa| − 1) (log2(|Sa| − 1)− log2 |Sa|)] =

= arg min
h∈H

Sa log2 |Sa| − (|Sa| − 1) log2(|Sa| − 1)

Since the last optimization term is monotonously strictly increasing with
|Sa(h)|, it is equivalent to

arg min
h∈H
|Sa(h)|,

which finishes the proof.

B. Overview of results
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LOF GT
dataset all rnd knn rnd knn l

breast-tissue 0.90 0.96 0.77 0.98 0.97 22
(9) (—) (—) (2) (1)

libras 0.73 — — 0.90 0.91 24
(90) (—) (—) (1) (1)

iris 1,00 1,00 0.98 1,00 0.99 50
(4) (2) (2) (1) (1)

wine 0.91 0.96 0.72 0.96 0.91 71
(13) (—) (—) (3) (2)

glass 0.72 0.72 0.68 0.73 0.70 76
(9) (5) (4) (3) (2)

synthetic-control-chart 1,00 0.82 0.70 0.99 0.85 100
(60) (3) (1) (10) (2)

sonar 0.62 — — 0.70 0.65 111
(60) (—) (—) (10) (4)

ecoli 0.98 0.94 0.89 0.97 0.95 143
(7) (2) (1) (2) (3)

parkinsons 0.63 0.66 0.58 0.77 0.66 147
(22) (—) (—) (7) (4)

multiple-features 0.99 0.93 0.83 0.94 0.89 200
(649) (—) (—) (3) (3)

vertebral-column 0.88 0.82 0.74 0.89 0.88 200
(6) (3) (2) (4) (1)

spect-heart 0.24 0.48 0.45 0.58 0.49 212
(44) (6) (2) (15) (10)

statlog-vehicle 0.93 0.87 0.72 0.93 0.91 218
(18) (5) (2) (7) (4)

haberman 0.66 0.79 0.80 0.74 0.60 225
(3) (2) (1) (2) (1)

ionosphere 0.94 0.93 0.91 0.95 0.93 225
(34) (14) (8) (6) (3)

isolet 0.99 0.84 0.66 0.98 0.90 240
(617) (1) (1) (16) (7)

statlog-segment 0.99 0.99 0.94 0.99 0.95 330
(19) (10) (7) (7) (7)

breast-cancer-wisconsin 0.88 0.85 0.80 0.89 0.89 357
(30) (4) (2) (8) (8)

yeast 0.71 0.67 0.64 0.73 0.71 463
(8) (4) (4) (5) (5)

pima-indians 0.66 0.64 0.58 0.68 0.64 500
(8) (3) (3) (6) (5)

blood-transfusion 0.55 0.85 0.65 0.81 0.80 570
(4) (3) (2) (3) (2)

letter-recognition 0.98 0.95 0.90 0.98 0.97 813
(16) (8) (6) (10) (9)

pendigits 0.78 0.84 0.81 0.79 0.83 1144
(16) (8) (9) (8) (9)

madelon 0.52 — — 0.74 0.54 1300
(500) (—) (—) (72) (29)

abalone 0.48 0.77 0.51 0.54 0.51 1528
(8) (5) (4) (6) (7)
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LOF GT
dataset all rnd knn rnd knn l

statlog-satimage 0.53 0.72 0.64 0.67 0.58 1533
(36) (7) (7) (11) (12)

cardiotocography 0.68 0.89 0.84 0.67 0.70 1655
(21) (6) (4) (10) (9)

waveform-2 0.69 — — 0.71 0.70 1692
(40) (—) (—) (15) (13)

waveform-1 0.54 — — 0.66 0.63 1696
(21) (—) (—) (10) (9)

wall-following-robot 0.72 0.71 0.70 0.78 0.70 2205
(24) (12) (10) (13) (14)

gisette 0.70 0.78 0.66 0.95 0.76 3000
(5000) (12) (6) (122) (39)

page-blocks 0.73 0.98 0.73 0.79 0.73 4913
(10) (5) (5) (7) (7)

musk-2 0.58 0.77 0.66 0.91 0.70 5581
(166) (21) (12) (45) (31)

magic-telescope 0.81 0.79 0.72 0.80 0.81 12332
(10) (6) (3) (7) (8)

statlog-shuttle 0.44 0.98 0.82 0.97 0.98 45586
(8) (5) (5) (6) (3)

miniboone 0.47 0.57 0.62 0.56 0.56 93565
(50) (8) (7) (17) (30)

persistent-connection 0.54 0.58 0.58 0.61 0.58 222455
(10) (8) (7) (5) (8)

Table 1: The first five columns shows area under ROC curves of LOF executed on
full feature space “baseline” (captioned all), and that of executed on sub-spaces
spanned by features used to explain anomalies identified by the “baseline” LOF
method (captioned LOF) and true anomalies captioned (GT). Captions “rnd”
and “knn” denote methods to construct the grow set, which are uniform sampling
and nearest neighbour respectively. The smaller numbers in brackets under each
AUC are the average number of used features in corresponding case. Finally, the
last column captioned l shows the number of normal samples in the problem.


