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Abstract—This paper presents a method for detection of
steganographic methods that embed in the spatial domain by
adding a low-amplitude independent stego signal, an example
of which is LSB matching. First, arguments are provided for
modeling the differences between adjacent pixels using first-order
and second-order Markov chains. Subsets of sample transition
probability matrices are then used as features for a steganalyzer
implemented by support vector machines.

The major part of experiments, performed on four diverse
image databases, focuses on evaluation of detection of LSB
matching. The comparison to prior art reveals that the presented
feature set offers superior accuracy in detecting LSB matching.

Even though the feature set was developed specifically for
spatial domain steganalysis, by constructing steganalyzers for ten
algorithms for JPEG images it is demonstrated that the features
detect steganography in the transform domain as well.

I. INTRODUCTION

A large number of practical steganographic algorithms
performs embedding by applying a mutually independent em-
bedding operation to all or selected elements of the cover [8].
The effect of embedding is equivalent to adding to the cover an
independent noise-like signal called the stego noise. A popular
method falling under this paradigm is the Least Significant
Bit (LSB) replacement, in which LSBs of individual cover
elements are replaced with message bits. In this case, the stego
noise depends on cover elements and the embedding operation
is LSB flipping, which is asymmetrical. It is exactly this
asymmetry that makes LSB replacement easily detectable [16],
[18], [19]. A trivial modification of LSB replacement is
LSB matching (also called +1 embedding), which randomly
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increases or decreases pixel values by one to match the LSBs
with the communicated message bits. Although both stegano-
graphic schemes are very similar in that the cover elements are
changed by at most one and the message is read from LSBs,
LSB matching is much harder to detect. Moreover, while the
accuracy of LSB replacement steganalyzers is only moderately
sensitive to the cover source, most current detectors of LSB
matching exhibit performance that varies significantly across
different cover sources [20], [4].

One of the first heuristic detectors of embedding by noise
adding used the center of gravity of the Histogram Charac-
teristic Function [11], [17], [26] (HCF). A rather different
heuristic approach was taken in [36], where the quantitative
steganalyzer of LSB matching was based on maximum likeli-
hood estimation of the change rate. Alternative methods used
features extracted as moments of noise residuals in the wavelet
domain [13], [10] and statistics of Amplitudes of Local
Extrema in the graylevel histogram [5] (further called the
ALE detector). A recently published experimental comparison
of these detectors [20], [4] shows that the Wavelet Absolute
Moments (WAM) steganalyzer [10] is the most accurate and
versatile, offering an overall good performance on diverse
images.

The heuristic behind embedding by noise adding is based
on the fact that during image acquisition many noise sources
are superimposed on the acquired image, such as the shot
noise, readout noise, amplifier noise, etc. In the literature
on digital imaging sensors, these combined noise sources
are usually modeled as an iid signal largely independent of
the content. While this is true for the raw sensor output,
subsequent in-camera processing, such as color interpolation,
denoising, color correction, and filtering, introduces complex
dependences into the noise component of neighboring pixels.
These dependences are violated by steganographic embedding
where the stego noise is an iid sequence independent of the
cover image, opening thus door to possible attacks. Indeed,
most steganalysis methods in one way or another try to use
these dependences to detect the presence of the stego noise.

The steganalysis method described in this paper exploits
the independence of the stego noise as well. By modeling
the differences between adjacent pixels in natural images, the
method identifies deviations from this model and postulates
that such deviations are due to steganographic embedding. The
steganalyzer is constructed as follows. A filter suppressing
the image content and exposing the stego noise is applied.
Dependences between neighboring pixels of the filtered image
(noise residuals) are modeled as a higher-order Markov chain.
The sample transition probability matrix is then used as a
vector feature for a feature-based steganalyzer implemented
using machine learning algorithms.

The idea to model differences between pixels by Markov



chains was proposed for the first time in [37]. In [41], it
was used to attack embedding schemes based on spread
spectrum and quantization index modulation and LSB replace-
ment algorithms. The same technique was used in [34] to
model dependences between DCT coefficients to attack JPEG
steganographic algorithms. One of the major contribution of
our work is the use of higher-order Markov chains, exploiting
of symmetry in natural images to reduce the dimensionality of
the extracted features, proper justification of the model, and
exhaustive evaluation of the method. Although the presented
steganalytic method is developed and verified for grayscale
images, it can be easily extended to color images by creating
a specialized classifier for each color plane and fusing their
outputs by means of ensemble methods.

This paper expands on our previously published work on
this topic [28]. The novel additions include experimental
evaluation of the proposed steganalytic method on algorithms
hiding in the transform (DCT) domain, comparison of intra-
and inter-database errors, steganalysis of YASS [35], [33],
and a more thorough theoretical explanation of the benefits
of using the pixel-difference model of natural images.

This paper is organized as follows. Section II starts with
a description of the filter used to suppress the image content
and expose the stego noise. It continues with the calculation
of the features as the sample transition probability matrix of a
higher-order Markov model of the filtered image. Section III
briefly describes the rest of the steganalyzer construction,
which is the training of a support vector machine classifier. The
subsequent Section IV presents the major part of experiments
consisting of (1) comparison of several versions of the feature
set differing in the range of modeled differences and the
degree of the Markov model, (2) estimation of intra- and
inter-database errors on four diverse image databases, and (3)
comparison to prior art. In Section V it is shown that the
presented feature set is also useful for detecting steganography
in block-transform DCT domain (JPEG images). The paper is
concluded in Section VI

II. SUBTRACTIVE PIXEL ADJACENCY MATRIX
A. Rationale

In principle, higher-order dependences between pixels in
natural images can be modeled by histograms of pairs, triples,
or larger groups of neighboring pixels. However, these his-
tograms possess several unfavorable aspects that make them
difficult to be used directly as features for steganalysis:

1) The number of bins in the histograms grows exponen-
tially with the number of pixels. The curse of dimen-
sionality may be encountered even for the histogram of
pixel pairs in an 8-bit grayscale image (2562 = 65536
bins).

2) The estimates of some bins may be noisy because they
have a very low probability of occurrence, such as
completely black and completely white pixels next to
each other.

3) It is rather difficult to find a statistical model for pixel
groups because their statistics are influenced by the
image content. By working with the noise component
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Figure 1. Distribution of two horizontally adjacent pixels (I; j, [; j4+1) in

8-bit grayscale images estimated from approximately 10700 images from the
BOWS2 database (see Section IV for more details about the database). The
degree of gray at (x,y) is the probability Pr([; ; = x A I; j41 = y) at the
logarithmic scale.

of images, which contains the most energy of the stego
noise signal, we increase the SNR and, at the same time,
obtain a tighter model. !

The second point indicates that a good model should capture
those characteristics of images that can be robustly estimated.
The third point indicates that some pre-processing, such as
denoising or calibration, should be applied to increase the
SNR. An example of this step is working with a noise residual
as in WAM [10].

Representing a grayscale m x n image with a matrix

{Ii,jui,j S {0, 1,2,..., 255},

ie{l,...,m},je{l,...,n}}

Figure 1 shows the probability Pr(I; ;,I; j41) of occurrence
of two horizontally adjacent pixels (I; ;,I; j+1) estimated
from approximately 10700 8-bit grayscale images from the
BOWS?2 database. Due to high spatial correlation in natural
images, the colors of neighboring pixels are similar, a fact
that shapes the probability distribution into a ridge that follows
the major diagonal. A close inspection of Figure 1 suggests
that the profile of the ridge along the major diagonal does
not change much with the pixel value. This observation is
confirmed in Figure 2 showing the ridge profile at three
locations I; ; = {64,128,196}. The fact that the profile shape
is approximately constant (it starts deviating only for high
intensity pixels I; ; = 196) suggests that the pixel differ-
ence I; j11 — I; ; is approximately independent of I; ;. We
quantified this statement by evaluating the mutual information

Here, “signal” is the stego noise and “noise” is the image content.
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Figure 2.  Probability Pr(I; ; — I; j+1|I; ;) (horizontal cuts of the graph

shown in Figure 1) for I; ; = 64, I;; = 128, and I; ; = 196 in 8-
bit grayscale images estimated from approximately 10700 images from the
BOWS2 database (see Section IV for more details about the database).

I(I; j4+1—1I,; ;,1; ;) from a corpus of 10700 grayscale images

from the BOWS?2 database. Because

I(Lij1 — Lij, Lij)
= H(lij+1— 1Lij) — H(Li j+1l1i ),

the mutual information can be estimated by evaluating the two
entropy terms from their corresponding definitions:

4.6757
4.5868,

H(IL;j1lli5) =

yielding to I(I; j11—I; j,1; ;) = 8.89-1072. Thus, knowing
I; ; the entropy of the difference I; ;41 — I; ; decreases only
by 0.0889/4.68 = 2%, which shows that any dependence
between the pixel differences I; ;11 — I; ; and pixel values
I; j is fairly small. *

The arguments above allow us to model the pixels in natural
images by working with the differences I; ;11 — I; ; instead
of the co-occurrences (I; jy1,1;;), which greatly reduces
the model dimensionality from 65536 to 511 in an 8-bit
grayscale image. It is, however, still impossible to model the
differences using a Markov chain as the transition probability
matrix would have 5112 elements. Further simplification and
reduction can be achieved by realizing that, for the purpose
of blind steganalysis, the statistical quantities estimated from
pixels have to be estimable even from small images. Hence,
only pixel pairs close to the ridge, alternatively, with pairs
with a small difference I; ;11 —1I; ; € [T, T], are relevant for
steganalysis. This approach was already pursued in [37], where
probabilities of selected pixel pairs were used as steganalytic
features.

2Fo]lowing a similar reasoning, Huang et al. [15] estimated the mutual
information between I; ; — I; jy1and I; j + I; j11 to 0.0255.

H(I; jy1 — i) — H(Lijy1 — Li | I,

B. The SPAM features

We now explain the Subtractive Pixel Adjacency Model
(SPAM) that will be used to compute the features for steganal-
ysis. The reference implementation is available for free down-
load on http://dde.binghamton.edu/download/spam/. First, the
transition probabilities along eight directions are computed.’
The differences and the transition probability are always com-
puted along the same direction. We explain further calculations
only on the horizontal direction as the other directions are
obtained in a similar manner. All direction-specific quantities
will be denoted by a superscript {—,—, [, 1,\, \» ", "}
showing the direction of the calculation.

The calculation of features starts by computing the differ-
ence array D°. For a horizontal direction left-to-right

Dl_)’] = Ii,j — Ii’jJrl’
ie{l,....,m}, je{l,...,n—1}.

As introduced in Section II-A, the first-order SPAM fea-
tures, FlSt, model the difference arrays D by a first-order
Markov process. For the horizontal direction, this leads to

M., = Pr(D?ﬂ_1 = u\Df] =),

where u,v € {-T,...,T}. If Pr(D;; = v) = 0 then
M., = Pr(D;;,, = u/D;; =v) =0.

The second-order SPAM features, F2nd, model the differ-
é}lce arrays D by a second-order Markov process. Again, for

the horizontal direction,

MZv,w
where w,v,w € {-T,...,T}. If Pr(D;};,; = v,D;; =
w) = 0 then M”, ,, = Pr(D; 1, = ulD;j =v,D;; =
w) = 0.

To decrease the feature dimensionality, we make a plausible
assumption that the statistics in natural images are symmetric
with respect to mirroring and flipping (the effect of portrait
/ landscape orientation is negligible). Thus, we separately
average the horizontal and vertical matrices and then the
diagonal matrices to form the final feature sets, FlSt, F2nd.
With a slight abuse of notation, this can be formally written:

=Pr(D; 0= u|DZ}+1 =v,D;} = w),

1
Fi = 7 [M7+M7+M M,
1
Fij1. o6 = Z[M_\+M.\+M./+M_/], (1)

where k = (27+1)? for the first-order features and k = (27+
1)3 for the second-order features. In experiments described in
Section IV, we used 7" = 4 and T" = 8 for the first-order
features, obtaining thus 2k = 162, 2k = 578 features, and
T = 3 for the second-order features, leading to 2k = 686
features (c.f., Table I).

Figure 3 summarizes the extraction process of SPAM fea-
tures. The features are formed by the average sample Markov
transition probability matrices (1) in the range [T, T]. The

3There are four axes: horizontal, vertical, major and major diagonal, and
two directions along each axis, which leads to eight directions in total.



Order T Dimension
1% 4 162
1st 8 578
ond 3 686
Table 1

DIMENSION OF MODELS USED IN OUR EXPERIMENTS. THE COLUMN
“ORDER” SHOWS THE ORDER OF THE MARKOV CHAIN AND 7' IS THE
RANGE OF DIFFERENCES.

complexity of the model is determined by the order of the
Markov model and by the range of differences 7.

The calculation of the difference array can be interpreted as
high-pass filtering with the kernel [—1,+1], which is, in fact,
the simplest edge detector. The filtering suppresses the image
content and exposes the stego noise, which results in a higher
SNR. The idea of using filtering to enhance signal to noise
ratio in steganalysis has been already used, for example, in
the WAM features calculating moments from noise residual in
Wavelet domain and it implicitly appeared in the construction
of Farid’s features [6] and in [40]. The filtering can also be
seen as a different form of calibration [7]. From this point of
view, it would make sense to use more sophisticated filters
with a better SNR. Interestingly, none of the filters we tested*
provided consistently better performance. This is likely due to
the fact that the averaging caused by more sophisticated filters
distorts the statistics of the stego noise, which results in worse
detection accuracy. The [—1, 1] filter is also a projection of the
pixel values co-occurrence matrix on one of the independent
directions — the anti-diagonal.

III. EVALUATION PROCEDURE

The construction of steganalyzers based on SPAM features
relies on pattern-recognition classifiers. All steganalyzers pre-
sented in this paper were constructed by using soft-margin
Support Vector Machines (SVMs) [38] with the Gaussian
kernel k(z,y) = exp (—v[lz — y||3), v > 0. Since the con-
struction and subsequent evaluation of steganalyzers always
followed the same procedure, the procedure is described here
to avoid tedious repetition later.

Let us assume that the set of stego images available for
the experiment was created from some set of cover images
and that both sets of images are available for the experiment.
Prior to all experiments, the images are divided into a training
and testing set of equal size, so that the cover image and the
corresponding stego image is either in the training or in the
testing set. In this way, it is ensured that images in the testing
set used to estimate the error of steganalyzers were not used
in any form during training.

Before training the soft-margin SVM on the training set,
the value of the penalization parameter C' and the kernel pa-
rameter v need to be set. These hyper-parameters balance the
complexity and accuracy of the classifier. The hyper-parameter

4We experimented with the adaptive Wiener filter with 3 x 3 neigh-
borhood, the wavelet filter [27] used in WAM, and discrete filters,
0 +1 0
+1 -4 41

0O +1 0

) [+17 727 +1}7 and [+1» +27 767 +27 +1}

C penalizes the error on the training set. Higher values of C'
produce classifiers more accurate on the training set but also
more complex with a possibly worse generalization.> On the
other hand, a smaller value of C' produces simpler classifiers
with worse accuracy on the training set but hopefully with
better generalization. The role of the kernel parameter -y is
similar to C. Higher values of 7 make the classifier more
pliable but likely prone to over-fitting the data, while lower
values of v have the opposite effect.

The values of C and y should be chosen to give the classifier
the ability to generalize. The standard approach is to estimate
the error on unknown samples using cross-validation on the
training set on a fixed grid of values and then select the
value corresponding to the lowest error (see [14] for details).
In this paper, we used five-fold cross-validation with the
multiplicative grid

C € {0.001,0.01,...,10000},
v € {2ie{-d-3,...,~d+3},

where d is the number of features in the subset.

The steganalyzer performance is always evaluated on the
testing set using the minimal average decision error under
equal probability of cover and stego images
1
2
where Pr, and Pr, stand for the probability of false alarm

or false positive (detecting cover as stego) and probability of
missed detection (false negative).

PErr - (PFp + PFn) 5 (2)

IV. DETECTION OF LSB MATCHING

To evaluate the performance of the proposed feature sets, we
subjected them to extensive tests on a well-known archetype
of embedding by noise adding — the LSB matching. First,
we constructed and compared steganalyzers using first-order
Markov chain features with differences in the range [—4, +4]
and [—8,+8] (further called first-order SPAM features) and
second-order Markov chain features with differences in the
range [—3,+3] (further called second-order SPAM features)
on four different image databases. Then, we compared the
SPAM steganalyzers to prior art, namely to detectors based
on WAM [10] and ALE [5] features. We also investigated the
problem of training the steganalyzer on images coming from a
different database than images in the testing set (inter-database
error).

1) Image databases: It is a well known fact that the
accuracy of steganalysis may vary significantly across different
cover sources. In particular, images with a large noise compo-
nent, such as scans of photographs, are much more challenging
for steganalysis than images with a low noise component or
filtered images (JPEG compressed). In order to assess the
SPAM models and compare them to prior art under different
conditions, we measured their accuracy on the following four
databases

SThe ability of classifiers to generalize is described by the error on samples
unknown during the training phase of the classifier.
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Figure 3. Schema of extraction of SPAM features.
T bpp CAMERA BOWS2 JPEG85 NRCS T bpp CAMERA BOWS2 JPEGS85 NRCS
Ist SPAM 4 025 0.097 0.098 0.021 0.216 Ist SPAM 4 025 11:44:16 17:55:21  05:56:57  00:21:18
Ist SPAM 8 025 0.103 0.123 0.033 0.226 1st SPAM 8 025 23:30:26 32:23:38  19:16:44  00:40:10
2nd SPAM 3 0.25 0.057 0.055 0.009 0.167 2nd SPAM 3 0.25 20:10:26 23:50:38  14:47:40  00:47:54
1st SPAM 4 0.5 0.045 0.040 0.007 0.069 1st SPAM 4 0.5 07:50:51 10:02:11  03:58:16  00:14:02
Ist SPAM 8 0.5 0.052 0.052 0.012 0.093 1st SPAM 8 0.5 21:44:36 20:18:07  12:44:56  00:31:25
2nd SPAM 3 0.5 0.027 0.024 0.002 0.069 2nd SPAM 3 0.5 19:01:15 19:25:09  09:55:02  00:42:10
Table II Table III

MINIMAL AVERAGE DECISION ERROR (2) OF STEGANALYZERS
IMPLEMENTED USING SVMS WITH GAUSSIAN KERNELS ON IMAGES FROM
THE TESTING SET. THE LOWEST ERROR FOR A GIVEN DATABASE AND
MESSAGE LENGTH IS IN BOLDFACE.

1) CAMERA contains approximately 9200 images with
sizes in the range between 1Mpix and 6Mpix captured
by 23 different digital cameras in the raw format and
converted to grayscale.

2) BOWS2 contains approximately 10700 grayscale images
with fixed size 512 x 512 coming from rescaled and
cropped natural images of various sizes. This database
was used during the BOWS2 contest [3].

3) NRCS consists of 1576 raw scans of film converted to
grayscale with fixed size 2100 x 1500 [1].

4) JPEG85 contains 9200 images from CAMERA com-
pressed by JPEG with quality factor 85.

5) JOINT contains images from all four databases above,
approximately 30800 images.

In each database, two sets of stego images were created with
payloads 0.5 bits per pixel (bpp) and 0.25 bpp. According
to the recent evaluation of steganalytic methods of LSB
matching [4], these two embedding rates are already difficult
to detect reliably. These two embedding rates were also used
in [10].

A. Order of Markov Chains

This paragraph compares the accuracy of steganalyzers
created as described in Section III employing the first-order
SPAM features with 7' = 4 and T' = 8, and second-order
SPAM features with 7' = 3. The reported errors (2), measured
on images from the testing set, are intra-database errors, which
means that the images in the training and testing set came from
the same database.

The results, summarized in Table II, show that steganalyzers
employing the second-order SPAM features that model the
pixel differences in the range [—3,+3] are always the best.
First, notice that increasing the model scope by enlarging T’
does not result in better accuracy as first-order SPAM features
with 7" = 4 produce more accurate steganalyzers than first-

TIME IN HH:MM:SS TO PERFORM THE GRID-SEARCH TO FIND SUITABLE
PARAMETERS FOR TRAINING OF SVM CLASSIFIERS.

T bpp CAMERA BOWS2 JPEG85 NRCS
1st SPAM 4 025 09:37 09:38 07:25 00:49
1st SPAM 8 025 18:05 14:55 13:22 00:48
2nd SPAM 3 0.25 13:36 18:25 10:39 00:40
1st SPAM 4 0.5 06:33 06:15 04:07 00:16
1st SPAM 8 0.5 11:13 11:28 10:38 00:26
2nd SPAM 3 0.5 15:41 18:30 13:24 00:29

Table IV

TIME IN MM:SS TO TRAIN THE SVM CLASSIFIER AND TO CLASSIFY ALL
SAMPLES FROM THE RELEVANT DATABASE (ALL EXAMPLES FROM THE
TRAINING AND TESTING SET).

order SPAM features with 7' = 8. We believe that this phe-
nomenon is due to the curse of the dimensionality, since first-
order SPAM features with 7' = 4 have dimension 162, while
first-order SPAM features with 7" = 8 have dimension 578.
The contribution to the classification of additional features
far from the center of the ridge is probably not very large
and it is outweighted by the increased number of features.
It is also possible that the added features are simply not
informative and deceptive. On the other hand, increasing the
order of the Markov chain (using second-order SPAM features)
proved to be highly beneficial as the accuracy of the resulting
steganalyzers has significantly increased, despite having the
highest dimension.

In the rest of this paragraph, we discuss the time needed
to train the SVM classifier and to perform the classification.
In theory, the complexity of training an SVM classifier grows
with the cube of the number of training samples and linearly
with the number of features. On the other hand, state-of-the-
art algorithms train SVMs using heuristics to considerably
speed up the training. In our experiments, we have observed
that the actual time to train a SVM greatly depends on the
complexity of the classification problem. SVMs solving an
easily separable problem require a small number of support
vectors and are thus trained quickly, while training an SVM for
highly overlapping features requires a large number of support
vectors and is thus very time consuming. The same holds for

exact



the classification, whose complexity grows linearly with the
number of support vectors and the number of features.

Tables III, IV show the actual times® to perform grid-search,
and to train and evaluate accuracy of the classifiers. We can
observe a linear dependency on the number of features —
the running time of steganalyzers using the first-order SPAM
features is approximately two times shorter than the rest.
A similar linear dependence is observed for the number of
training samples. (Note that the times for the smaller NRCS
database are shorter than for the rest.)

B. Inter-database Error

It is well known that steganalysis in the spatial domain is
very sensitive to the type of cover images. This phenomenon
can be observed in the results presented in the previous
section as steganalysis is more accurate on less noisy images
(previously JPEG compressed images) than on very noisy
images (scanned images from the NRCS database). We can
expect this problem to be more pronounced if the images in the
training and testing sets come from different databases (inter-
database error). The inter-database error reflects more closely
the performance of the steganalyzer in real life because the
adversary rarely has information about the cover source. This
problem was already investigated in [4] using the WAM and
ALE features and the HCF detector.

In our experiments, we used images from CAMERA,
BOWS2, JPEGS8S5, and NRCS. These image sources are very
different: NRCS images are very noisy, while JPEG85 images
are smoothed by the lossy compression. BOWS2 images are
small with a fixed size, while images in CAMERA are large
and of varying dimensions.

The training set of steganalyzers consists of 5000 cover and
5000 stego images randomly selected from three databases.
The accuracy was evaluated on images from the remaining
fourth database, which was not used during training. For
testing purposes, we did not use all images from the fourth
database, but only images reserved for testing as in the
previous two sections to allow fair comparison with the results
presented in Table II. All steganalyzers used second-order
SPAM features with 7' = 3 and were created as described in
Section III. The error is shown in rows denoted as “Disjoint”
in Table V.

The error rates of all eight steganalyzers are summarized
in Table V in rows captioned “Disjoint.” Comparing the inter-
database errors to the intra-database errors in Table II, we
observe a significant drop in accuracy. This drop is expected
because of the mismatch between the sources for testing and
training as explained above.

If the adversary does not know anything about the cover
source, her best strategy is to train the steganalyzer on as
diverse image database as possible. To investigate if it is
possible to create a steganalyzer based on the SPAM features
capable of reliably classifying images from various sources,
we created two steganalyzers targeted to a fixed message
length trained on 5000 cover and 5000 stego images randomly

SAll experiments were performed on one core of AMD opteron 2.2Ghz
with 2Gb of ram per core.

bpp CAMERA BOWS2 JPEGS85 NRCS

Disjoint  0.25 0.3388 0.1713 0.3247 0.3913

Disjoint 0.5 0.2758 0.1189 0.2854 0.3207

Joint 0.25 0.0910 0.0845 0.0198 0.2013

Joint 0.5 0.0501 0.0467 0.0102 0.08213
Table V

INTER-DATABASE ERROR Ppg;, OF STEGANALYZERS EMPLOYING
SECOND-ORDER SPAM FEATURES WITH 1" = 3. THE CAPTION OF
COLUMNS DENOTES THE SOURCE OF TEST IMAGES. THE ROWS
CAPTIONED “DISJOINT” SHOW THE ERROR OF STEGANALYZERS
ESTIMATED ON IMAGES FROM THE DATABASE NOT USED TO CREATE THE
TRAINING SET (EIGHT STEGANALYZERS IN TOTAL). THE ROWS
CAPTIONED “JOINT” SHOW THE ERROR OF STEGANALYZERS TRAINED ON
IMAGES FROM ALL FOUR DATABASES (TWO STEGANALYZERS IN TOTAL).

bpp 2"4 SPAM WAM ALE
CAMERA  0.25 0.057 0.185 0.337
BOWS2 0.25 0.054 0.170 0313
NRCS 0.25 0.167 0293 0319
JPEGS5 0.25 0.008 0.018  0.257
JOINT 0.25 0.074 0206 0376
CAMERA  0.50 0.026 0.090  0.231
BOWS2 0.50 0.024 0.074  0.181
NRCS 0.50 0.068 0.157 0259
JPEGS5 0.50 0.002 0.003  0.155
JOINT 0.50 0.037 0.117 0.268

Table VI

ERROR (2) OF STEGANALYZERS FOR LSB MATCHING WITH MESSAGE
LENGTH 0.25 AND 0.5 BPP. STEGANALYZERS WERE IMPLEMENTED AS
SVMSs WITH GAUSSIAN KERNEL. THE LOWEST ERROR FOR A GIVEN
DATABASE AND MESSAGE LENGTH IS IN BOLDFACE.

selected from the training portions of all four databases. The
errors are shown in Table V in rows captioned by “Joint.”
Comparing their errors to the inter-database errors, we observe
a significant increase in accuracy, which means that it is
possible to create a single steganalyzer with SPAM features
capable of handling diverse images simultaneously. Moreover,
the errors are by 0.04 higher than the errors of steganalyzers
targeted to a given database (see Table II), which tells us that
this approach to universal steganalysis has a great promise.

An alternative approach to constructing a steganalyzer that
is less sensitive to the cover image type is to train a bank
of classifiers for several cover types and equip this bank with
a forensic pre-classifier that would attempt to recognize the
cover image type and then send the image to the appropriate
classifier. This approach is not pursued in this paper and is
left as a possible future effort.

C. Comparison to Prior Art

Table VI shows the classification error (2) of the stegana-
lyzers using the second-order SPAM features (686 features),
WAM [10] (contrary to the original features, we calculate
moments from 3 decomposition levels yielding to 81 features),
and ALE [5] (10 features) on all four databases for two
relative payloads. We have created a special steganalyzer for
each combination of database, features, and payload (total
5 x 3 x 2 = 30 steganalyzers). The steganalyzers were
implemented by SVMs with a Gaussian kernel as described
in Section IIL
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