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3 CNRS - LAGIS, Lille, Franepatrik.bas�e-lille.frAbstrat. This paper presents a omplete methodology for designingpratial and highly-undetetable stegosystems for real digital media.The main design priniple is to minimize a suitably-de�ned distortionby means of e�ient oding algorithm. The distortion is de�ned as aweighted di�erene of extended state-of-the-art feature vetors alreadyused in steganalysis. This allows us to �preserve� the model used by ste-ganalyst and thus be undetetable even for large payloads. This frame-work an be e�iently implemented even when the dimensionality of thefeature set used by the embedder is larger than 107. The high dimen-sional model is neessary to avoid known seurity weaknesses. Althoughhigh-dimensional models might be problem in steganalysis, we explain,why they are aeptable in steganography. As an example, we introdueHUGO, a new embedding algorithm for spatial-domain digital imagesand we ontrast its performane with LSB mathing. On the BOWS2image database and in ontrast with LSB mathing, HUGO allows theembedder to hide 7× longer message with the same level of seurity level.1 IntrodutionThe main goal of a passive-warden steganographi hannel [1℄ (stegosystem) be-tween Alie and Bob is to transmit a seret message hidden in an innououslylooking objet without any possibility for the warden Eve to detet suh om-muniation. A stegosystem is alled perfetly seure [2℄ if the over distributionexatly mathes the stego distribution. Although this problem has been solvedby the so-alled �over generation� [3,4,5℄, this solution requires exat knowledgeof the probability distribution on over objets, whih is hard (if possible at all)to obtain for real digital media in pratie. The most ommon pratial solutionis to hide the message by making small perturbations with the hope that theseperturbations will be overed by image noise.One of the most popular embedding methods used with digital images is theLeast Signi�ant Bit (LSB) replaement, where the LSBs of individual overelements are replaed with message bits. It has been quikly realized that the



asymmetry in the embedding operation4 is a potential weakness opening doors tothe development of highly aurate targeted steganalyzers (see [6℄ and referenestherein) pushing the seure payload almost to zero.A trivial modi�ation of the LSB replaement method is LSB mathing (of-ten alled ±1 embedding). This algorithm randomly modulates pixel values by
±1 so that the LSBs of pixels math the ommuniated message. Despite thesimilarity to LSB replaement, LSB mathing is muh harder to detet, beausethe embedding operation is no longer unbalaned. In fat, LSB mathing hasbeen shown to be near optimal [7℄ when only information from a single pixelan be utilized. The biggest weakness of LSB mathing is the assumption thatimage noise is independent from pixel to pixel. It has been shown that this is nottrue in natural images, whih was in di�erent ways exploited by LSB mathingdetetors [8,9,10℄.From the short overview of spatial domain steganography above, it is learlyseen that the embedding algorithms are not seure. This is mainly beause theirimage model is not general enough and some marginal or joint image statistisare not preserved. In this paper, we propose a novel method for designing newsteganographi algorithms allowing to use very general and high-dimensionalmodels overing various dependenies in natural images in order to reate moreseure steganographi algorithms. The method follows and extends the best prin-iples known in steganography and steganalysis so far.The proposed method relies on the priniple of minimal impat embed-ding [11℄, whih is revisited in Setion 2. This priniple allows deompositionof the design of steganographi algorithms into the design of the image modeland the oder. By virtue of this priniple, steganographi algorithms an be im-proved either by using a better oder, or by using a better model. Thus, theimage model beomes one of the most important parts of the design. Setion 3 isdevoted to this problem. We explain why steganalyti features an be used as agood start to design a steganographi model, if they are extended to avoid over-�tting to a partiular steganalyzer. Although suh steganographi models an bevery large (we give an example of a model with dimension 107), we argue that forsteganographi purposes suh large dimension does not pose a problem. In Se-tion 4, we pratially demonstrate the presented method by onstruting a newsteganographi algorithm for the spatial domain based on the SPAM (Subtra-tive Pixel Adjaeny Matrix) features [10℄. The seurity of the proposed shemeand the e�et of individual design elements on the seurity is experimentallyveri�ed. The paper is onluded in Setion 5.The ideas presented in this paper an been seen in prior art. (a) Virtually allsteganographi algorithms aim to minimize distortion to preserve some imagemodel. The image model is derived either from the image itself (e.g., F5 algo-rithm [12℄ and its improvement [13℄, Model Based Steganography [14℄, et.), orthe distortion is de�ned by means of error introdued by quantization. The lat-ter lass of algorithms (MMX [15℄ and its improvement [16℄, PQ [17℄, et.) uses�side information� in the form of a higher quality image, whih is not available4 Even over elements are never dereased whereas odd ones are never inreased.



to the reipient (and Eve). (b) Many algorithms (F5 [12℄, nsF5 [13℄, MMX [15℄,and [16℄) already utilized various oding shemes (matrix embedding) to mini-mize the distortion. While early shemes (e.g., F5 or LSB mathing) used odingto minimize the number of embedding hanges, a signi�ant departure was pro-posed in MMX, whih allowed more embedding hanges than optimal (with givenoding), in order to derease the overall distortion. Thus, MMX an be inter-preted as making loal ontent-adaptive embedding by means of oding, whihis lose to the proposed sheme.With respet to the above prior work, the main ontributions of this work areas follows. (a) We promote and advoate the use of high-dimensional image mod-els in steganography that annot be used in steganalysis (yet). (b) We separatethe image model from oding, whih allows simulating optimal oding and thusomparing image models without the e�et of oding. Moreover, the messagean be hidden in parts of the image di�ult for steganalysis while onsideringall pixels simultaneously during the embedding.Although the proposed steganographi sheme might be onsidered as anadaptive, it is not adaptive in the usuall approah, when �rst good pixels areseleted [9,18,19℄ (e.g. pixels in noisy and textured areas) and than the messageis inserted in the image while modifying only the seleted pixels (e.g by usingwet paper odes). Our sheme always uses all pixels for the embedding, but ithanges them with probability inversely proportional to the detetability of theirhange.In the rest, we use the following notation. Small-ase boldfae symbols areused for vetors and apital-ase boldfae symbols for matries and possiblytensors. Symbols X = (xij) ∈ X = {0, . . . , 255}n1×n2 and Y = (yij) ∈ X areexlusively used to represent intensities of n = n1n2-pixel over and stego image.For the sake of simpliity, we sometimes index the pixels with a single number,
X = (xi)

n
i=1 and similarly for stego image Y = (yi)

n
i=1.2 Minimizing Embedding ImpatVirtually all pratial steganographi algorithms for digital media strive to mini-mize an ad ho embedding impat [11,20℄, whih, if properly de�ned, is orrelatedwith detetability. In its simplest form, embedding impat is simply the numberof hanges (known as matrix embedding). However, more general ways, as al-ready suggested by Crandal [21℄, should be onsidered. In general, the embeddingimpat is aptured by a non-negative distortion measure D : X × X → [0,∞].During embedding, the algorithm should �nd a stego image Y, whih (a) om-muniates a given message and (b) ahieves minimal value of D(X,Y). Unfor-tunately, this problem is generally very di�ult in pratie.From this reason, we onstrain ourselves to a well-studied speial (but stillpowerful enough) ase assuming (a) binary embedding hanges5, i.e., |xi−yi| ≤ 1,5 Extensions to ternary ase an be done by the �e+1� onstrution desribed in [22℄.



i ∈ {1, . . . , n}, and (b) additive distortion measure in the form
D(X,Y) =

n
∑

i=1

ρi|xi − yi|. (1)The onstants 0 ≤ ρi ≤ ∞ are �xed parameters expressing osts of (or distortionaused by) pixel hanges. The ase ρi = ∞ orresponds to the so-alled wetpixel not allowed to be modi�ed during embedding. Notie that the additivityof the distortion funtion D implies that that the embedding hanges do notinterat between eah other. This is a reasonable assumption, espeially if weassume low embedding rates and embedding hanges being far from eah other.Unfortunately, there are ases of important distortion measures whih annot bewritten in this form. One suh ase will be introdued in Setion 4.For additive distortion funtions (1), the following theorem taken from [11℄gives the minimal expeted distortion obtained by hiding m bits in an n-pixelover objet.Theorem 1. Let ρ = (ρi)
n
i=1, 0 ≤ ρi < ∞, be the set of onstants de�ningthe additive distortion measure (1) for i ∈ {1, . . . , n}. Let 0 ≤ m ≤ n be thenumber of bits we want to ommuniate by using a binary embedding operation.The minimal expeted distortion has the following form
Dmin(m, n, ρ) =

n
∑

i=1

piρi,where
pi =

e−λρi

1 + e−λρi

(2)is the probability of hanging the ith pixel. The parameter λ is obtained by solving
−

n
∑

i=1

(

pi log2 pi + (1− pi) log2(1− pi)
)

= m. (3)The importane of Theorem 1 is in the separation of the image model (neededfor alulating onstants ρi) and the oding algorithm used in a pratial imple-mentation. By virtue of this separation, better steganographi algorithms an bederived by using better oding or by using a better image model. One importantonsequene is that, in order to study the e�et of the image model on stegano-graphi seurity, no oding algorithm is needed at all! The optimal oding anbe simulated by �ipping eah pixel with probability pi as de�ned in (2).We use this separation priniple in Setion 4 to �nd a good image model usedto derive the osts ρi. The study of the loss introdued by a pratial odingmethod is also inluded.



3 From Steganalysis to SteganographyAlmost all state-of-the-art statistial steganalyzers (with the exeption of ste-ganalyzers for LSB replaement) are based on a ombination of steganalyti fea-tures and pattern reognition algorithms. In steganalysis, steganalyti featuresare used to redue the dimension of a spae of all over objets, so that the pat-tern reognition algorithms an learn (if possible) the di�erene between overand stego objets in this redued feature spae. Using suh a low-dimensionalmodel for designing steganography usually leads to overtraining to a partiularfeature set (this issue of feature set ompleteness is disussed in [23,24℄). Keepingthis in mind, we believe that the features an serve as a good preursor of theimage model to determine the embedding osts ρi. Although we show this tran-sition from steganalyti features to a steganographi model on spatial domainsteganography, we believe that the ideas and tools presented here an be usedin other domains and with other steganalyti features as well.We start by reviewing the reently proposed SPAM features [10℄ proposedto detet steganographi algorithms in spatial and transformed domains. Then,we disuss the problem of over�tting the steganographi model to steganalytifeatures as well as the remedy by expanding the model beyond the apabilitiesof ontemporary pattern reognition algorithm. Finally, we propose a simplemethod to identify parts of the model that are more important for steganalysis.3.1 SPAM featuresIt is well known that values of neighboring pixels in natural images are notindependent. This is not only aused by the inherent smoothness of naturalimages, but also by the image proessing (de-mosaiking, sharpening, et.) in theimage aquisition devie. This proessing makes the noise, whih is independentin the raw sensor output, dependent in the �nal image. The latter soure ofdependenies is very important for steganalysis beause steganographi hangestry to hide themselves within the image noise.The SPAM [10℄ features model dependenies between neighboring pixels bymeans of higher-order Markov hains. They have been designed to provide a low-dimensional model of image noise that an be used for steganalyti purposes. Thealulation of di�erenes an be viewed as an appliation of high-pass �ltering,whih e�etively suppresses the image ontent and exposes the noise. The suessof SPAM features in deteting wide range of steganographi algorithms [25℄suggests this model to be reasonable for steganalysis and steganography.The SPAM features model transition probabilities between neighboring pix-els along 8 diretions {←,→, ↓, ↑,տ,ց,ւ,ր}. Below, the alulation of thefeatures is explained on horizontal left-to-right diretion, beause for the otherdiretions the alulations di�er only by di�erent indexing. All diretion-spei�variables are denoted by a supersript showing the diretion.Let I ∈ X be an image of size n1 × n2. The alulation starts by omputingthe di�erene array D
•, whih is for a horizontal left-to-right diretion

D
→
ij = Iij − Ii,j+1,



for i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2 − 1}. Depending on the desired order of thefeatures, either the �rst-order Markov proess is used,
M
→
d1d2

= Pr(D→i,j+1 = d1|D
→
ij = d2), (4)or the seond-order Markov proess is used,

M
→
d1d2d3

= Pr(D→i,j+2 = d1|D
→
i,j+1 = d2,D

→
ij = d3), (5)where di ∈ {−T, . . . , T }. The alulation of the features is �nished by separateaveraging of the horizontal and vertial matries and the diagonal matries toform the �nal feature sets. With a slight abuse of notation, this averaging anbe written as
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, (6)where k = (2T + 1)2 for the �rst-order features and k = (2T + 1)3 for theseond-order features. In [10℄, the authors used T = 4 for the �rst-order features(leading to 162 features) and T = 3 for the seond-order features (leading to 686features).3.2 Deomposing SPAM featuresAlthough the seond-order SPAM features use onditional probabilities to modelpixel di�erenes, their essential omponents are atually o-ourrene matries
C
→
d1d2

= Pr(D→ij = d1,D
→
i,j+1 = d2), (7)

C
→
d1d2d3

= Pr(D→ij = d1,D
→
i,j+1 = d2,D

→
i,j+2 = d3). (8)It is easy to show that the seond order SPAM features with T = 3 an be diretlyobtained6 from the set {Ck

d1d2
,Ck

d1d2d3
|k ∈ {→, ↑,տ,ր},−3 ≤ di ≤ 3}. In fat,we observed that this set of 4×(343+49) = 1568 o-ourrene features has onlyslightly inferior performane in deteting LSB mathing, whih we attribute toa smaller ratio of training samples per dimension (known as urse of dimension-ality). From this point of view, the distortion measure used to derive embeddingosts ρi should be designed to preserve the o-ourrene matries (7) and (8),beause their preservation implies the preservation of seond-order SPAM fea-tures.Although the idea of preservation of SPAM features is tempting, the distor-tion measure would not be general enough. The new sheme would be so tied toa partiular steganalyti method that it an be expeted to be detetable by aslight modi�ation of the features. This problem of �over�tting� the distortion6 Observe that C

→

d1d2d3
= C

←

−d3,−d2,−d1
, and M

→

d1d2d3
= C

→

d3d2d1
/C→d2d1

.



measure to a partiular steganalyti method together with the need for a om-plete feature set has been already desribed [23,24℄ for the DCT domain. Here,we propose to resolve the issue of over�tting to a partiular model by expandingit beyond pratial limits of steganalysis (for this model). This an be easilydone in the ase of o-ourrene matries by inreasing the range of overeddi�erenes T.At this point, it is important to larify the di�erene between the e�ets ofmodel dimensionality for steganography and for steganalysis. The high-dimensionalmodels in steganalysis present a serious problem for subsequent mahine learningdue to the urse of dimensionality and related over�tting. Although the atualratio between the number of training samples and the model dimensionalitydepends on the used mahine learning algorithm and the problem, the rule ofthumb is to have ten times more samples than the model dimensionality (num-ber of features). These drawbaks prevent the use of high-dimensional modelsin steganalysis. By ontrast, high-dimensional models in steganography do notause problems, beause there is no statistial learning involved. The over im-age provides the exat model to be preserved and, onsequently, there is nourse of dimensionality, whih justi�es the use of high-dimensional models insteganography.An additional important pratial detail is that updating the o-ourrenematries to re�et one pixel hange is muh easier than updating the onditionalprobabilities (the former involves only addition and subtration of a few itemsof the matries, while the latter involves division of the large part of the ma-tries). The e�ient update of o-ourrene matries enables modeling a widerange of di�erenes between pixels (the use of large T ) resulting in modelingmost di�erenes (and pixels) in the image (and better preservation of the SPAMfeatures).3.3 Identi�ation of detetable parts of the modelsUnfortunately, the ideal ase, when the image model is fully preserved during theembedding, is virtually impossible to realize in pratie. It is therefore importantto identify parts of the model important for steganalysis and set appropriate ostsof pixel hanges ρi.The assoiation of osts ρi to the modi�ation of the model is in general verydi�ult beause we do not know whih parts of the model are important. Here,we suggest to evaluate the individual elements of the model independently ofeah other (any method for feature ranking an be used [26℄) and set the osts
ρi to re�et this ranking. The advantage of individual evaluation is that it anbe done quikly even for a large number of features. On the other hand, the indi-vidual evaluation of the model elements is ertainly not optimal, espeially fromthe mahine learning point of view. However, we believe (and our experimentson�rm that) that the osts derived this way an be used as a good startingpoint. There is no doubt that other (and better) methods of deriving osts ρiexist.
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Fig. 1: Left: Values of FLD riteria (9) between the feature C
→

d1d2
alulated from overimages and stego images obtained by LSB mathing with full payload. Right: mean ofthe feature C

→

d1d2
over the set of over images from the BOWS2 database.Our approah works as follows. First, we reate a set of images embeddedwith a simulated maximum payload by a given embedding operation (in ourase of spatial domain steganography, this amounts to randomly inrease orderease the pixel value by one with probability 50%). Then, we use the riteriaoptimized in Fisher Linear Disriminant (FLD riteria) (9) to evaluate, howgood are individual features for deteting given embedding hanges. The valuesof FLD riteria (9) of individual elements may be either used diretly to setthe osts of embedding hanges ρi, whih might be dangerous due to the alreadydisussed problem of over�tting. Alternatively, they an be used to obtain insightinto the problem and set the osts heuristially, whih is reommended. In therest of this setion, we use the analysis of the FLD riteria to identify parts ofthe o-ourrene model that an be used for embedding.For o-ourrene matries introdued in the previous subsetion, the valuesof FLD riteria for a single feature C

→
d1d2

(for �xed d1 and d2) an be written as
(

E[CX,→
d1d2

]− E[CY,→
d1d2

]
)2

E
[

C
X,→
d1d2
− E[CX,→

d1d2
]
]2

+ E
[

C
Y,→
d1d2

− E[CY,→
d1d2

]
]2 , (9)where E[·] stands for the empirial mean (obtained in our ase over all imagesin the BOWS27 image database), and C

X,→
d1d2

, C
Y,→
d1d2

stand for a single elementof the o-ourrene matrix C
→
d1d2

alulated from the over and stego image,respetively. The higher the value, the better the feature when used alone fordeteting the LSB mathing algorithm. Figure 1 shows the values estimatedfrom over and stego images obtained by embedding a full payload with LSBmathing. We an see that the most in�uential features are C
→
−2,2 and C

→
2,−2orresponding to regions ontaining noisy pixels in a smooth area. Also, it isinteresting to see that regions having the same olor (suh as saturated pixels)7 See http://bows2.gipsa-lab.inpg.fr/BOWS2OrigEp3.tgz



represented by C
→
0,0, or pixels in smooth transitions represented by C

→
d,d, do notonstitute a good single feature. This is most probably aused by their highvariane, whih makes features C

→
−2,2 and C

→
2,−2 more stable and more suitablefor steganalysis. Although not easy to visualize, similar results and interpretationan be obtained from higher-order o-ourrene matries C

•
d1d2d3

.This analysis shows whih parts of the image model should be preserved.We stress again that this analysis was performed from the evaluation of a sin-gle feature and its diret appliation may lead to overtraining. As was alreadymentioned above, we onsider this analysis as a good guide to derive heurististo build the embedding osts ρi.4 From Theory to PratieIn this setion, all piees and ideas presented above are put together, in order togive life to a new steganographi algorithm alled HUGO (Highly UndetetablesteGO). The individual steps of this algorithm are depited in Figure 2.
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High dimensional modelFig. 2: High-level diagram of HUGO.4.1 Evaluation settingThe sheme was assessed using the BOWS2 image database, ontaining approx-imately 10800 images of �xed size 512×512. Thanks to the �xed size, all imageshave the same number of usable elements, whih means that we do not have totake the Square Root Law [27,28℄ into the aount. Prior to all experiments, theimages were divided into two sets of equal size, one used exlusively for training,the other exlusively for evaluation of the auray. The hosen auray mea-sure is the minimal average deision error under equal probability of over andstego images, de�ned as
PE = min

1

2

(

PFp + PFn

)

,where PFp and PFn stand for the probability of false alarm or false positive(deteting over as stego) and probability of missed detetion (false negative).To observe the e�et of over-�tting for a partiular feature set, we reate blindsteganalyzers employing four di�erent feature sets (�rst- and seond-order SPAM



features [10℄ with T = 4 and T = 3 respetively, WAM [9℄, and reently proposedCross Domain Features8 (CDF) [25℄).All steganalyzers were realized as soft-margin SVMs [29℄ with Gaussian ker-nel9, k(x, y) = exp(−γ ‖x− y‖
2
). The parameters γ and C were set to values or-responding to the least error estimated by �ve-fold ross-validation on the train-ing set on the grid (C, γ) ∈

{

(10k, 2j)|k ∈ {−3, . . . , 4}, j ∈ {−d− 3,−d + 3}
},where d is the logarithm at the base 2 of the number of features.Besides the SVM-based blind steganalyzers, we also use the Maximum MeanDisrepany [30℄ (MMD) to quikly ompare the seurity of di�erent versions ofthe algorithm.4.2 Co-ourrene model in steganographySetion 3.2 motivated the use of o-ourrene matries (SPAM features) as areliable model for steganography and explained, why the distortion funtion D(not just onstants ρi) is derived diretly from them. In order to stress thoseparts of the o-ourrene matries that are more important for steganalysis,the distortion funtion D is de�ned as a weighted sum of di�erenes
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 , (10)where w(d1, d2, d3) is a weight funtion quantifying the detetability of thehange in the o-ourrene matrix10. The weight funtion w(d1, d2, d3) has thefollowing simple form
w(d1, d2, d3) =

1
[

√

d2
1 + d2

2 + d2
3 + σ

]γ , (11)where σ, γ > 0 are parameters that an be tuned in order to minimize the de-tetability. This very onservative hoie mimis the average number of samplesavailable to Eve to estimate the individual features C
•
d1d2d3

from a single im-age (see the right part of Figure 1). Motivated by the analysis performed inSetion 3.3, the rationale of this hoie is simple: the more samples Eve has,the better estimate of individual feature she an obtain and the more she an8 CDF ombines seond-order SPAM features (T = 3) and artesian alibrated fea-tures proposed originally for DCT domain. To extrat the DCT domain features, weompressed the image with quality fator 100.9 We did some experiments with linear SVMs and never obtained better results. Fora disussion related to linear SVMs, see [10℄.10 If the w(d1, d2, d3) = 1 for all di and T = 255, then all ρi would be the same andthe whole sheme would just minimize the number of embedding hanges.



HUGO embedding algorithm1 for (i,j) in PIXELS { //funtion D is taken from (10) I2 Yp = X; Yp(i,j)++; rho_p(i,j) = D(X,Yp); //alulate emb. impat3 Ym = X; Ym(i,j)--; rho_m(i,j) = D(X,Ym); //for eah pixel4 }5 rho_min = min(rho_p, rho_m); //elementwise; use minimum for embedding6 PIXELS_TO_CHANGE = minimize_emb_impat(LSB(X), rho_min, message)7 Y = X; //start making hanges in over image8 for (i,j) in PIXELS_TO_CHANGE { //order given by the MC visit. strategy9 if ( model_orretion_step_enabled ) {10 Yp = Y; Yp(i,j)++; dp = D(X,Yp); Ym = Y; Ym(i,j)--; dm = D(X,Ym);11 if ( dp<dm ) { Y(i,j)++; } else { Y(i,j)--; }12 } else {13 if ( rho_p(i,j)<rho_m(i,j) ) { Y(i,j)++; } else { Y(i,j)--; }14 }15 }Fig. 3: Pseudo-ode of the HUGO embedding algorithm as desribed in Setion 4.3.utilize it for steganalysis. By penalizing highly-populated features (in this asefeatures extrated from pixels with low di�erenes d1, d2, and d3), we drive thealgorithm to hide the message into parts of the image di�ult for Eve to model.In pratie, our hoie of w(d1, d2, d3) orrelates the distribution of the messagebits with the loal texture of the image.Note that the distortion measure (10) is not additive in the sense of (1). Thisis a signi�ant deviation from the assumptions of Theorem 1, beause for thismore general ase near-optimal pratial algorithms for minimizing suh embed-ding impat do not exist yet. To make this measure additive, we approximatethe osts of embedding hange as
ρi,j = D(X,Yi,j), (12)where Y

i,j is the stego image obtained by hanging the (i, j)th pixel of overimage X. As will be seen later, this approximation has a ruial impat on thedetetability of the sheme.4.3 Implementation details of HUGOFigure 3 shows the pseudo-ode of our implementation. On lines 1�5, thealgorithm alulates distortions orresponding to modifying eah pixel by ±1and sets the embedding ost of pixel hange (ρi,j) to the minimum of these twonumbers (for saturated pixels, there is only one hoie).One the positions of pixel hanges are determined (either by simulating theembedding by virtue of Theorem 1, or by using a pratial algorithm, suh asthe syndrome-trellis odes [20℄, (funtion minimize_emb_impat on line 6 of theode)), there are two ways to ensure that the pixel's LSB ommuniates themessage.



Without model orretion: This version assumes that the assumption ofthe Theorem 1 holds, whih means that we annot do any better than hangepixels to values determined in lines 1�5 (line 13 of the pseudo-ode). The orderin whih the pixels are hanged does not matter.With model orretion (MC): Sine our distortion measure D (10) doesnot satisfy the assumptions of Theorem 1, we an further derease the distortionby hanging pixels to values (remember that there are two ways to math pixels'LSB to the desired bit) minimizing the overall distortion D(X,Yi), where Y
idenotes the over image X after hanging the ith pixel (see lines 10�11 in thepseudo-ode). As will be seen in the experimental part below, the impat ofmodel orretion on the seurity is signi�ant. In this ase of model orretion,the order in whih the pixels requiring hange of LSB are proessed is important.In the next subsetion, we experimentally evaluate the following strategies: (S1)top left to bottom right, (S2) from highest ρi,j to lowest ρi,j , (S3) from lowest

ρi,j to highest ρi,j , (S4) random order.Finally we note that our implementation of HUGO in C++ with T = 90,the model orretion step, and pratial Syndrome-Trellis Code (STC) embedsmessage with relative length 0.25bpp to image of size 512×512 in approximately5s on Intel Core 2 Duo 2.8 GHz proessor. We onsider this time more than suit-able for real appliations. In pratie, the algorithm may need to ommuniate asmall number of parameters in order to be able to deode the message orretly.In HUGO, we need to ommuniate the size of the message in order to onstrutthe same STC ode at the reeiver side. This is usually done by reserving asmall portion of the image based on the stego key, where a known ode is usedfor embedding.4.4 HUGO's maturingThe HUGO algorithm has several parameters: the range of modeled di�erenes
T, the parameters of the weight funtion γ and σ, and utilization of the modelorretion step. All these parameters need to be set before the atual use ofthe algorithm. Sine we are not aware of any general guidane, we set themexperimentally while omparing di�erent versions of the algorithm by blind ste-ganalysis. Although it an be argued that the parameters will be tied to thedatabase, we prefer to see this step as tuning the algorithm to image soure usedby Alie and Bob.The parameter setting proeeds as follows: (a) set the parameter T, (b) �ndsuitable values of σ and γ in (11), () set the the strategy of pixel visits. Inall experiments aimed to tune HUGO, the oding was simulated by virtue ofTheorem 1.The parameter T was set to T = 90 (the model has more then 107 features),ausing more than 99% of the o-ourrenes in the typial image to be overedby the model. By this hoie of T , we strongly believe that the detetabilityof HUGO by SPAM features annot be improved by inreasing the range ofmodeled di�erenes. In fat, our experiments showed that the inrease of the
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(b) WAMFig. 4: Value of MMD (lower is better) plotted against parameters γ and σ for HUGOwith model orretion and S1 visiting strategy. Results for other features and evenwhen MC step was not used were similar and are omitted due to spae onstraints.range of modeled di�erenes was not followed by a derease of the lassi�er error(most probably due to the urse of dimensionality).The searh for suitable parameters of the weight funtion (11) was performedon a grid (σ, γ) ∈
{

(10k, 2j)|k ∈ {−3, . . . , 1}, j ∈ {−1, 2}
} for both versions ofthe algorithm (with and without MC). The embedding payload was �xed to

0.25bpp. In order to redue the omplexity of the searh, the detetability wasevaluated by means of the Maximum Mean Disrepany [30℄. Figure 4 showsthe MMD values for HUGO with the MC step and S1 visiting strategy. Due tospae onstraints, we report graphs only for SPAM and WAM features with MCstep S1. All other graphs even for the ase of Hugo without MC step were ofsimilar shape suggesting the hoie parameters γ and σ to be reasonable. For allexperiments presented in the rest of this setion, we hose γ = 4 and σ = 10.As we have already mentioned, the e�et of the model orretion on theseurity is substantial. For �xed lassi�ation error PE = 40% of an SVM-basedsteganalyzer utilizing seond-order SPAM features, HUGOwith model orretionstep inreases the seure payload from 0.25bpp to 0.4bpp. This di�erene isentirely due to the fat that our distortion measure is not additive. Sine we donot know yet how to do optimal oding for non-additive measures, the modelorretion step is in this ase a reasonably good remedy.Finally, we have ompared the strategies of pixel visits S1�S4 in the modelorretion step by training SVM-based steganalyzer utilizing seond order SPAMfeatures. From Figure 5 (a), strategy S2 seems to be the most seure wrt theSPAM features. Model orretion strategies S3 and S4 were performing slightlyworse than S2 and are not displayed. These results show that the model or-retion step should perform embedding hanges from pixels ausing the largestdistortion to pixels ausing the least distortion.
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Fig. 5: (a) Comparison of seurity of di�erent versions of HUGO by means of error PEof steganalyzers utilizing seond-order SPAM features with T = 3. (b) Comparisonof di�erent steganalyti features for deteting ordinary LSB mathing with optimalternary oding and HUGO with MC step S2. All steganalyzers are targeted to a givenalgorithm and message length.4.5 HUGO's seurityFigure 5 (a) ompares the seurity of HUGO with simulated optimal odingutilizing di�erent model orretion strategies. For S2, whih seems to be thebest, we also report its pratial implementation using syndrome-trellis odewith onstraint height h = 10 (STC) [20℄. All algorithms are ompared to or-dinary LSB mathing with optimal (simulated) ternary matrix embedding. Thereported quantity PE is the error of SVM-based steganalyzers. We did not om-pared HUGO to adaptive ternary LSB mathing [9℄, or to MPSteg [31℄, beausethe reported improvement in the seurity of both shemes over standard LSBmathing were not signi�ant.The impat of swithing from the optimal (simulated) oding to the STCoder (STC) on the detetability of HUGO is also interesting and interpretable.Ideally, we would like to have ode whih would hange eah pixel with proba-bility (2). To ompare the e�et of a pratial oder for �xed distortion d, weevaluate the oding loss l(d) = (αOPT − αACT)/αOPT, where αOPT is the pay-load embedded by the optimal oder and αACT is the payload embedded by apratial algorithm while both of them ahieve the same distortion d. Codingloss 0 ≤ l(d) ≤ 1 tells us what portion of the ideal payload we are loosing dueto pratial embedding algorithm. For STCs, l(d) was often around 3% − 7%depending on ρ and h. This �nding is onsistent with Figure 5 (a).Aording to Figure 5 (b), HUGO o�ers very high seurity. Even for payloadsas large as 0.30bpp, the error of all four steganalyzers targeted to detet HUGOwith optimal oding andMC step is above 40%. It is expeted that seure payload



may be higher for over soures without suh strong pixel dependenies as presentin BOWS2 database from saling the original images.Even though the improvement obtained from CDF features is signi�antwhen ompared to seond-order SPAM, the relative payload for whih the shemeremains undetetable stays essentialy the same. This threshold may point toamount of pixels that are not modeled by either feature set (SPAM or DCTbased). However, inluding suh pixels in the steganalyti model may not beas bene�ial as inluding them into steganographi model due to the statistiallearning problem. Suh pixels are expeted to be part of very noisy end texturedareas whih will be hallenging for steganalysis.Last, but not least, if we ompare HUGO with MC step S2 to the state-of-the-art LSB mathing with optimal ternary oding, we an see that by usingHUGO, Alie gains more than 700% of the apaity at PE = 40% on the BOWS2database.5 ConlusionThis paper presented a omplete method for designing pratial and seuresteganographi shemes for real digital media. The main design priniple is tominimize a suitably-de�ned distortion aused by the embedding. Sine the dis-tortion funtion is an essential input of the method, a large part of the paper wasdevoted to its design. We reommended to use weighted di�erene of extendedstate-of-the-art feature vetors already used in steganalysis. The extension ofthe feature sets, whih an ontain even 107 features, is important to avoidover�tting to a partiular steganalyzer. The use of suh large feature sets wasjusti�ed by explaining the fundamental di�erene of their role in steganographyand steganalysis.The whole approah was demonstrated by designing a new steganographialgorithm for spatial domain (alled HUGO), where the image model was de-rived from SPAM features. Parts of the model, i.e., the weights, responsible fordetetion of LSB mathing were identi�ed using riteria optimized in FisherLinear Disriminant, whih motivated the onstrution of an ad ho distortionmeasure. The oding itself was performed using the syndrome-trellis odes whihenable very fast implementation of the sheme in pratie for arbitrary set ofembedding osts ρ.The seurity of HUGO was veri�ed and ompared to prior art (LSB math-ing) on a wide range of payloads for four di�erent features sets. In ontrast withLSB mathing, HUGO allows the embedder to hide 7× longer message withthe same level of seurity level. By onrete numbers, the payload of HUGO atdetetion error 40% is 0.3bpp, while for LSB mathing it is 0.04bpp.6 AknowledgementsTomá² Filler was supported by Air Fore O�e of Sienti� Researh underthe researh grant FA9550-08-1-0084. The U.S. Government is authorized to
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