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Abstract—This paper presents a method for detection matrix, the resulting stego image is double-compressed.
of double JPEG compression and a maximum likelihood The statistics of DCT coefficients in double-compressed
estimator of the primary quality factor. These methods are  3pEG jmages may significantly differ from the statistics

essential for construction of accurate targeted and blindte- . inal d i Th diff
ganalysis methods for JPEG images. The proposed methods'" Singl€-compressed images. ese dierences neg-

use support vector machine classifiers with feature vectors atively influence the accuracy of some steganalyzers
formed by histograms of low-frequency DCT coefficients. developed under the assumption that the stego image has

The performance of the algorithms is compared to selected peen Compressed on|y once. This is especia”y true for

prior art. steganalysis methods based on calibration [5], which is
a process used to estimate macroscopic properties of the

I. INTRODUCTION cover image from the stego image. If the steganographic

bl . Gi h method performs double compression, the calibration
Double-compression in JPEG images occurs when,d,.os has to be modified to mimic what happened

JPEG image is decompressed to the spatial domain ing embedding, which requires the knowledge of

than_ resaved with a d'ﬁere”F (s_econdar_y) quant_|zat|qﬂe primary quantization matrix. Ignoring the effects of

matrix. We call th? first quantization matrix the PriMany, ble-compression may lead to extremely inaccurate
quanuzatlon matrlx. Th_ere are several reasons why _ ?eganalysis results [5]. Thus, methods for detection
are interested in detecting double-compressed JPEG 8- double-compression and estimation of the primary

ages and in Fhe _related _problem of estimation of tIglf"uantization matrix are essential for design of accurate
primary guantization matrix. steganalysis

_First, detection of double compression is a foren- g, 5" 5| methods proposed for detection of double-
sic tool useful for recovery of the processing history,yression and for estimation of the primary quanti-
Dogble?compresse_d images are also frgquently produ%ﬂion matrix [7], [13], [6], [5] were designed under the
during image man!pu!gtlon. By detecting the traces %Issumption that the image under investigation is a cover
recompression In individual 'mage segments, we m%age (not embedded). Because the act of embedding
be able to identify the forged region because the NORyher modifies the statistics of DCT coefficients, there
tampered _part of the image will exhibit traces of doublq-S a need for methods that can properly detect double
compression [13], [17]. . ) compression in stego images and estimate the primary

Second, some steganographic algorithms (‘]Stecﬁjantization matrix. Methods presented in this paper
5 [181' Othuess [14]) glways d(_acompress the COViJere developed to handle both cover and stego images,
JPE_G Image into the SPa“a' d_omaln before embgdd'r\ghich makes them particularly suitable for applications
During embedding, the image is compressed again, Uststeganalysis
ally with a default quantization matrix (F5 uses default +ig paper i's organized as follows. We briefly re-

quality factor 80, OutGuess75). If the quantization ;e the hasics of JPEG compression in Section Il and
matrix used during embedding differs from the originalgntinye with the discussion of prior art in Section IIl.
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basic properties of the format that are relevant to oddditionally, we say that a specific DC3oefficientD;;
problem. A detailed description of the format can bwas double-compressed if and only@t}j + ij.
found in [10]. In a single-compressed JPEG image (only compressed
During JPEG compression, the image is first dividedith quantization matrixQ'), the histogram of DCT
into disjoint 8 x 8 pixel blocks B,s, r,s = 0,...,7. coefficients for a fixed modé, j, ij, ke {1,....10},
Each block is transformed using the Discrete Cosing well-modeled with a quantized generalized Gaussian
Transformation (DCT) distribution [9]. When a single-compressed JPEG is
. decompressed to the spatial domain and compressed
dyj = Z w(r)w(s) cos 1r(2i+1)cosls(2j+1)Bm again with another quantization matr@@®, Q' # Q?,
ra0 4 16 16 the histograms of DCT coefficients no longer follow the
generalized Gaussian distribution; they exhibit artgact
where w(0) = —s andw(r > 0) = 1. The DCT caused by double-compression.
coefficientsd,; are then divided by quantization steps Some of the most visible and robust artifacts in the
stored in the quantization matrig;; and rounded to histogram of DCT coefficients areeros and double-

integers peaks[6]. Zeros occur when some multiples @f?;
d. in the double-compressed image are not present (see
D;;j = round (QZ?_) ;1,7 €{0,..., 7} the odd multiples in Figurel(b)), which occurs when
ij

(Q3;1Q1) N (Qf; # Q3F;), wherealb means & divides
We denote the, j-th DCT coefficient in thek-th block .” Depending on the image and the values of the
as ij, k € {1,...,l}, where! is the number of all quantization steps, the zeros may take the form of local
8 x 8 blocks in the image. The paf¥, j) € {0,...,7} x minimum rather than exact zeros.
{0,...,7} is called thespatial frequencyor modg of A double peak occurs when a multiple @fj; falls
the DCT coefficient. The JPEG compression finishes iy the middle of two multiples onfj and no other
ordering the quantized coefficients along a zig-zag patimultiple of ij is closer. Formally, there exist integers
encoding them, and finally applying lossless compreg;v > 0, such thatqulj = % ((U -1) Z?J. +UQ123-) .In
sion. this case, the multipleQ}j contributes evenly to both
The decompression works in the opposite order. Aftgp — 1)Q?; andvQ;;. Figures1(c,d) show examples of
reading the quantized DCT blocks from the JPEG filglouble-peaks occurring at multiples= 2, 5,8, .. .. For
each block of quantized DCT coefficierfisis multiplied a more detailed description of the impact of double-
by the quantization matrix, d;; = Qi; - Dij, and compression on the DCT histogram, we refer to [6], [13].
the Inverse Discrete Cosine Transformation (IDCT) is The examples shown in Figure 1 demonstrate that
applied tod;;. The values are finally rounded to integersglifferent combinations of primary and secondary quan-
and truncated to a finite dynamic range (usuflly255]). tization steps create distinct patterns in the histogram
The block of decompressed pixel valuBsis thus of DCT coefficients. Consequently, it is natural to use
N . tools for pattern recognition to match histogram patterns
B = trunc(round(IDCT(Qi;-Dij))), 4,5 €10,-.-, T} g primary quantization steps. This idea was already

Due to the rounding and truncation involved in compre§XPploited in [6] and is used in this paper as well.
sion and decompressio® will in general differ from
the original blockB. I1l. PRIOR ART
Although there are not any standardized quantizationy the pest of our knowledge, the first work dedicated
matrices, most implementations of JPEG compressigflihe problem of estimation of the primary quantization
use a set of quantization matrices indexed byuality matrix in double-compressed images is due Fridrich et
factor_from the set{1, 2,_. ..,100}. Theses _matnces are |, [6]2. Instead of restoring the whole primary quantiza-
used in the reference implementatioprovided by the tion matrix, the authors focused on estimation of the pri-
Independent JPEG Group. We refer to thenstasidard mary quantization step9’; for low-frequency DCT co-
matrices. _ efficients(i, j) € {(0,1), (1,1),(1,0)}, because the esti-
We say that a JPEG image has beeouble- maies for higher frequencies become progressively less
compressedf the JPEG compression was applied twiC&gjiaple due to insufficient statistics. Three approaches
each time with a different quantization matrix and withyare discussed. Two of them were based on matching
the same alignment with respect to thes grid. We call  he histograms of individual DCT coefficients of the

the first matrixQ" the primary quantization matrand inspected image with the histograms calculated from
the second matrig)? the secondary quantization mattix

2The problem of detection of previous (single) JPEG comjmwess
Lftp://ftp.simtel.net/pub/simtelnet/msdos/graphigsfjsré.zip from bitmap images was also investigated in [3].
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Examples of double-compression artifacts in histogs of absolute values of DCT coefficients for fixed md@@el).

estimates obtained by calibration [4], [5] followed bythe inspected JPEG image.
simulated double-compression. Both histogram matching
approaches were outperformed by the third method that
used a collection of neural networks. One neural network
was trained for each value of the secondary quantization

l
Z 6 z] —m- Qf]) l (2)

k=0

9}, to recognize the whered is the indicator functiong(z) = 1 if 2 = 0
primary quantization stef)}; in the range[2,9], for and 6(x) = 0 whenz # 0. Note that the fea-

. € {2,...,9}, and in the rangél, 9], for Q — 1. ture vector (1) does not include(0) and h(1). The
AII neural networks used the same input feature vectdeported accuracy of this neural network detector on
cover JPEG images was better th@9’% for estima-
tion of low frequency quantization steps with frequen-
cies (i,7) € {(0,1),(1,1),(1,0)}, and better than
95% for quantization steps for frequenci€s,j) <
{(2’ 0)7 (2’ 1)7 (1’ 2)7 (0’ 2)}

Recently, Shi et al. [7] proposed an idea for recov-
ery of compression history of images based on the

step of interestQ;; € {1,...,

x = {hij(2), hij(3), ..., hij(15)}, (1)

whereh;;(m) denotes the number of occurrencesiof

7, among absolute values of DCT coefficierj]?%- in



observation that the distribution of the first (leading)o expect that double-compression can be detected from
digit® of DCT coefficients in single-compressed JPEGtego images using pattern recognition methods.
images of natural scenes follows the generalized Benford
distribution Many steganalytic methods need to know the compres-
1 sion history of a given stego image to produce accurate
p(z) =N -log (1 + H—xq) ze{l,....,9, () results. Steganalysis based on calibration (estimation of
. the cover image) is especially vulnerable as it may
where ¢ and s are free parameters an¥ is a nor- r5quce completely misleading results when the effect
malization constant. This fact is used to estimate thg double-compression is not accounted for. Reliable
quantization matrix) of images previously JPEG cOM-qetection of double-compression is also important for
pressed but currently stored in some other lossless imageca|led multi-classifiers that attempt to not only detect
format (such as TIFF or PNG) in the following mannefe presence of a secret message but also classify the
The inspected image is compre_ssed wnh dn‘ferentquahg\(eg0 image to a known steganographic method. For
factorsQ;. WhenQ; # @, the image will be double- ¢yample the blind multi-classifier described in [11] con-

compressed and the generalized Benford law (3) will Rgsts of a double-compression detector and two separate
violated. On the other hand, whe@;, = Q. the first assifiers—one trained for single compressed images
digit of DCT coefficients will follow the generalized ang one specially built for double-compressed images.
Benford distribution for some; and s, because the The gouple-compression detector thus serves as a pre-
statistics of DCT coefficients is not affected by doublégassification. When it decides that an image has been
compression. The publication also proposes t0 use g ple-compressed, it already points to those methods
histogram of the first digit of DCT coefficients as anat can produce such images (F5 and OutGuess). Mis-
featur(_e set (further called the Be_nford feature se_t) f(?ékenly detecting a single-compressed image as double-
detection of double-compressed images. In Section ¥pmpressed may thus introduce large classification errors
we compare the Benford feature set to the feature $g} the entire multi-classifier, because it can now only
proposed in this paper by training and evaluating the,qer either cover, F5, or OutGuess. What is needed is
classifiers on exactly the same database of images. 5 gouble-compression detector with a low probability of
Popescu et al. [13], [12] presented another approagfise positives, which means low probability of detect-
for detection of double-compression in JP_EG_ IMagegyy a single-compressed image as double-compressed.
The authors showed that repeated quantization inti@;jse negatives (detecting a double-compressed image as
duces periodic artifacts into the histogram of DCT COsingle-compressed) are much less serious because when
efficients of each DCT mode. This periodicity can bggyple-compressed images are misclassified due to lack
detected as peaks in the Fourier domain. Unfortunately, presence of double-compression artifacts, the effect

we were unable to obtain the implementation from thgs double-compression on steganalysis is also small.
authors and our own implementation produced results in-

compatible with those reported in [12], which prevented The problem of double-compression detection could

us from comparing the approaches. be considered as a sub-problem of the primary quanti-
zation matrix estimation. We could detect whether the
IV. PROPOSED APPROACH image was double-compressed by comparing the esti-
The vast majority of steganographic techniques fénated primary quantization matrix with the secondary
JPEG images embed messages by directly manipulatiéigantization matrix. Unfortunately, this naive approach
the DCT coefficients. Most modern steganographic & not very accurate. Better performance can be achieved
gorithms preserve first-order statistics and thus presemw#éh a separate double-compression detector (further
the artifacts of double-compression. For example, Mode#lled the DC detector) followed by the primary quality
Based Steganography preserves models of histograi@etor estimator (the PQF estimator) applied only to
of each DCT mode, OutGuess preserves the globalages classified as double-compressed.
histogram of all DCT coefficients (but not necessarily the
histograms of individual DCT modes). F5 does change The positive experience with a combination of classi-
the histogram but in a smooth manner, making it moifecation tools and features formed by histograms of mul-
spiky. This, too, would preserve the qualitative charactéiples of quantization steps in [6] steered our attention in
of double-compression artifacts. Thus, it is reasonabileis direction. Because of the problem with insufficient
statistics for high-frequency DCT coefficients mentioned
3The first digit is understood as the finsalid digit in the decimal b the previous section, we also limit the set of DCT
representation of the number. The numbersrarigpadded by zeros to frequencies used by both the DC detector and the POE
have the same number of digits. For example 2 and 25 have the sa q y Q
first digit 2. estimator to the set



SQS Detectable PQS #SVMs
1 S:=1{3,4,5,6,7,8} 5
5 S5 =1{2,3,4,5,6,7,8,9,10 36
£=1{(1,0),(2,0),(3,0),(0,1),(1,1), b e,
(271)1(072)1(172)1(073)} 7 S7=12,3,4,5,6,7,8,9,10} 36
8  Ss=1{3,5,6,7,8910,11,12} 36
Before we describe the details of our method, we TABLE |

briefly discuss another possibility to estimate the primary PRIMARY QUANTIZATION STEPS(PQS)DETECTABLE BY THE
quantization matrix from the StatiStiCS Of DCT Coefﬁ_MULTI-CLASSIFIER FOR A GIVEN SECONDARY QUANTIZATION STEP
. . (SQS). THE LAST COLUMN (#SVMS) SHOWS THE NUMBER OF
cients D;; even though we do not pursue this methog,yary SUPPORTV ECTORMACHINES IN THE MULTI-CLASSIFIER
in this paper. We could model the distribution of DCT
coefficients for a fixed spatial frequency in the single-
compressed image using a parametric model (e.g., gen-
eralized Gaussian) and estimate the primary quantizatioha collection of SVM-based multi-classifies,: for
step, together with the nuisance model parameters, usigch value of the secondary gquantization 5@39 In
the Maximum Likelihood (ML) principle and avoid our experiments, we created five multi-classifiers for
using classification altogether. While this choice doahe secondary quantization ste@s; € {4,5,6,7,8},
sound tempting, the distribution of DCT coefficients majpecause this is the range of quantization steps for spatial
be affected by embedding and thus the ML estimatfrequencie from secondary quantization matrices with
may produce inaccurate results because of a model mysrality factors75 and 80 (the default quality factors in
match. Indeed, the F5 algorithm makes the distributicdF6 and OutGuess)Table | shows the primary quanti-
of DCT coefficients more spiky by increasing the numberation steps detectable by the multi-classifiers for each
of zeros due to shrinkage. Even OutGuess modifies thecondary quantization step and the number of SVMs in
distribution of coefficients fomdividual DCT modes (it the multi-classifier.
only preserves thglobal histogram). We note that it is possible to detect other primary
guantization stepS)}j. To this end, one would have to
prepare examples of images with required combinations
of the primary Q}; and secondary quantizatio@?
u§t'eps and appropriately extend the multi-classlﬁ@r%j
(training a set of binary classifiers as described below).
The feature vector: for the multi-classifier]-'Q?j is
formed by the histogram of absolute values of the first
16 multiples of @7, of all DCT coefficients DY for all
k=1,...,1

A. Detection of double-compression

The double-compression detector is implemented
ing a soft-margin support vector machin€-(SVM)
with the Gaussian kernel [2k(z,y) = exp(—v|x —
y||?). Its feature vector: consists of histograms (2) for
spatialfrequencies from the sef. Formally,

1 o
€r = {C_(hlj(o)’h”(l)77h13(15))‘ (’L,]) EE}, 1
’ 2= = (hi;(0), hi;(1),..., hi;(15)), 4
where Cij are normalization constants C( 1(0), hig (1) i(15)) @)
Cyi = 21570 hij(m)). The dimension of this where C' is a normalization constant chosen so that
r 15 T, = 1. The multi-classifier]-'Q?v consists of a

feature set (further called the Multiple-counting featur;mzol i - ' ’ )
set) is16 x 9 = 144. collection of binary classifiers. Since there is one binary

Because the DC detector is a binary classifier, it assifier for every combination of two different primary
easy to adjust its bias towards one class. As alreal antization steps, the number of binary classifiers is
mentioned in the introduction to this section, this featurkz). Wheren is the number of classes. For example, for

is important for applications in steganalysis. the secondary quantization stépwe classify inton = 6
classes, for which we nee@) = 15 binary classifiers.

) o During classification, the feature vector (4) is presented

B. Detector of primary quantization steps to all binary classifiers. Every binary classifier gives vote

The double-compression detector described in the one primary quantization step. At the end, the votes
previous section generates binary output—the imagedse counted and the quantization step with most votes is
either single or double-compressed. In this section, veelected as the winner. Ties are resolved by selecting the
introduce a method for detecting the individual primarprimary quantization step randomly from the set of steps
guantization steps and then in Section IV-C, we explainith the highest number of votes to avoid creating a bias
the process of matching the detected quantization steépwards one class. All binary classifiers are soft-margin
to the closest standard matrix. Support Vector Machines{—SVM) with the Gaussian

We only detect the primary quantization steps fdkernel.
spatialfrequencies from the set. This detector consists Note that the feature vector (4) cannot distinguish



between the following three case@:}j is a divisor of on a database created frof906 raw images. Before
7 Qi = 1, andQj; = Q;;. Thus, we classify all conducting any experiments, the images were divided
these cases into one common clagg = fj. This into a training subset containirg$00 raw images and a
phenomenon imposes a fundamental limitation on thesting subset containirzj06 raw images. This allowed
performance of the detector. Fortunately, the doublas to estimate the performance on images that were
compressed image in all these three cases does neter used in any form in the training phase. The testing
exhibit any discernible traces of double-compressioaybset contains images taken by different cameras and
and hence influences steganalysis in a negligible mannghotographers.
In other words, our failure to distinguish between these The double-compressed stego images were created by
cases is not detrimental for steganalysis. OutGuess and F5. We embedded message lemng€is,
50%, and 25% of embedding capacity for each algo-
C. Matching the closest standard quantization matrix rithm and image. These two steganographic algorithms
The primary quantization step detector presented YHE'® selected beca_use their implementations produ_ce
the previous section only estimates the primary quaAuble-compressed images. The double-compressed im-
tization steps for a small set of spatial frequencicdd®S were prepared withd different primary quality
from the setf. Since we wish to recover the wholef@ctorsQss = {63,64,...,93,94,96,98} and with two
quantization matrix (e.g., in order to carry out calibratiodifferent secondary quality factors5, which is the
in steganalysis), a procedure is needed that will find t¢fault quality factor of OutGuess, and, the default

whole primary quantization matrix. Moreover, becausguality factor of F5.
the detection will sometimes produce incorrect values B€cause we need to test the performance of the DC

of the primary quantization steps, the procedure shoui§tector also on singieompresseinages to evaluate its
reveal such outliers and replace them with correct valud@lSé Positive rate, we also prepared single-compressed

We achieve both tasks by finding the closest standdfg@des Wwith quality factors75 and 80 embedded

quantization matrix using a Maximum Likelihood estiPy the following steganographic algorithms: FS [18],

mator. Model Based Steganography without [15] (MBS1) and

Denoting the detected and the true primary quaniflith [16] deblocking (MBS2), JP Hide&Seek [1], Out-

zation steps a@}j and Q%j, respectively, the closest Guess [14], and Steghide [8]. The embedded message
standard quantization matrix can be obtained using t#9th was chosen as00%, 50%, and 25% of the

ML estimator embedding capacity for each algorithm. All MBS2 im-
R R ages were embedded only wiB0% of the capacity of
QR = argg}?} H P(Q;;1Q45, Qi;), MBS1, because during embedding of longer messages
hjeL the deblocking part of MBS2 usually fails.

where 7 is the set of standard quantization matrices. The resulting databasehich contains both double-
The set7 can be modified to incorporate availableand single-compressed imagesintains cover images
side information (for example some camera manufagith the same combinations of primary and secondary
turers use customized quantization matrices). The valgeality factors as the stego images. The total number of
P(QL|QL,Q%) is the probability that the classifier processed images was x 2 x 7 x (3500+2506) + 17 x
detects the primary quantization st€f; when the cor- (3500 + 2506) ~ 3,000, 000.
rect primary quantization step '@%j and the secondary
quantization step isQ?. These probabilities can beA. Double-compression detector
empirically estimated from images used for training the In this section, we describe the details for constructing
detector. the detector of double-compressed images with sec-
We note that it is possible to incorporate a priorbndary quality factorsy5 and 80 (see Section IV-A).
knowledge about the distribution of primary quantizatiopue to extensive computational complexity, instead of
tables into the estimation procedure and switch to a MAfraining a general double-compression detectorbiath
estimator. This a priori information could be obtained byuality factors, we decided to train a special double-
crawling the web and collecting the statistics about théompression detector for each secondary quality factor
JPEG quality tables. In this paper, however, we do n¢the complexity of training & —SVM is O(N?), where

pursue this approach. N is the number of examples.).
All classifiers were implemented using the soft-margin
V. EXPERIMENTAL RESULTS C—SVM and were trained oh0000 examples of single-

In this section, we present experimental results ammpressed images (cover images and images embedded
compare them to selected prior art. All results in this seby the six aforementioned steganographic algorithms)
tion, including the prior art evaluation, were calculatednd on 10000 examples of double-compressed images



. . Benford  Multipl
(cover images and images embedded by F5 and Out- _ ‘en o u"pe
Single-compressed 61.74%  98.64%

Guess). The hyper-parametéfsand~ were determined Double-compressed 30.91%  97.11%
by a grid-search on the multiplicative grid

TABLE Il
i o\l . ACCURACY OF DOUBLECOMPRESSION DETECTOR EMPLOYING
1 9J —

(C’, 7) € {(2 2 )|Z € {O, T 19}7] = { Tyees 5}} ’ BENFORD AND MULTIPLE-COUNTING FEATURES DETECTORS ARE

. . . ) TRAINED AND TESTED ON COVER IMAGES ONLY
combined with5—fold cross-validation.

Figure 2 shows the accuracy of the DC detector on
double-compressed JPEG images from the testing set.
We can see that the accuracy on cover images and image$able 1l shows the detection accuracy of both clas-
embedded by OutGuess is very good. The accuracy sifiers calculated on images from the testing set. We
F5 images is worse, especially on images containixcluded double-compressed images with primary qual-
longer messages. We attribute this loss of accuracy ity factors 74, 96, and 98 because DCT coefficients
the fact that F5 alters the shape of histograms of DOFith spatialfrequencies inC are not technically double-
coefficients. As the primary quality factor increases, acompressed in those cases. Table Il shows that while
tifacts of double-compression are becoming more subtlee performance of the Benford features on our database
and the accuracy of the detector decreases, which isolbocover images is close to random guessing with bias
be expected. towards the single-compressed class, the accuracy of
In Figure 2, we can observe sharp drops in the acclultiple-counting features is abo@8%.
racy of the detector on images with primary quality fac-
tors96 and98, and on images with primary quality factorC. Estimation of primary quantization coefficients
74 and secondary quality factdt5. These sharp drops Thjs section presents experimental results of the de-
correspond to situations when the histograms of DGgctor of the primary quantization steps. As described
coefficients are not affected by double-compressionj sSection IV-B, the detector is implemented by a
all primary quantization steps for frequencies frain colection of “max-wins” multi-classifiers, where each
are divisors of the secondary quantization steps. Theyiti-classifier consists of the set of soft-margin Sup-
guantization steps for alb frequencies fromL for port Vector Machines —SVM) with the Gaussian
standard matrices with quality facto96 and 98 are all kernel. The training set for eac—SVM contained
ones. Similarly, the quantization steps in the standasgog examples—+0000 from each class. The hyper-
guantization matrices with quality factorst and 75 parametersC’ and v were estimated by means of a

satisfyQi;(74) = Qi;(75), (i, j) € L. Consequently, the 5_fo|d cross-validation on the multiplicative grid
decision of the detector is correct, since in these cases,

the DCT coefficients inC are not double-compressed. (C:7) € {(2',27)|i € {4,...,18},i € {~8,...,6}}.
We note that we avoided using images with these comgy training, we used’ and~ corresponding to the point
binations of quality factors in the training set. with the least cross-validation error.

Figure 3 shows the accuracy of the double- Taples |1l and IV compare the accuracy of the SVM-
compression detector on single-compressed JPEG igysed primary quantization step detector with the Neural
ages embedded by various steganographic algorithmgtwork (NN) detectdt from [6] on images from the
Almost all of the tested steganographic algorithms preasting set. The comparison is done for the secondary
serve the histogram of DCT coefficients, which helpguantization steps 4, 5, 6, 7, and 8. The NN detector
the detector to maintain its good accuracy. The onyetects only the quantization steps in the rafge).

exception is F5 already commented upon above. e have to point out that while the SVM detector was
trained on cover and stego images, the NN detector was
B. Benford features trained on cover images only. Because of this difference,

In Section Il ioned h we present the results on a mixed database of cover and
n .ectlon » We mentlone an approach propos ego images (Table 1V) and on cover images only (Ta-
by Shi et al. [7] to use the histogram of the dIStrIbUtIOI?Jle ). In most cases, the SVM based detector outper-
of the first digit of DCT coefficients as a feature VeCtof ) med the NN detector. The rare occasions when the NN
for a classifier detecting double-co_mpressiop. In order {fe ctor gave better results correspond to the situation
compare B_enford features to Multiple-counting feature‘ﬁhen the primary quantization step was a divisor of the
described in Section IV-A, we prepared two-SVM secondary step. As explained in Section IV-B, incorrect

cIaSS|f|er§—one for each feature set. Both Class'f'eﬁ?‘imary step detection in these cases has virtually no
were trained on cover images with the (secondar}gﬂuence on steganalysis

quality factor75. The size of the training set was00
examples. 4The trained detector was kindly provided to us by the autbbfs].
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Fig. 2. Accuracy of the double-compression detector foosdary quality factors 75 and 80 on double-compressed dowages and images
embedded with F5 and OutGuess algorithms. Images with pyiozality factor equal to the secondary quality factor awedouble-compressed,
which means that in this case, the correct answer of the tdetecsingle-compressed. Graphs are drawn with respedtet@timary quality
factor.
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Fig. 3. Accuracy of the double-compression detector onlsingmpressed JPEG images with quality factofsand 80. Note that the range
of Y axis is 90% to 100%.

SQS Z 5 6 7 8
SVM NN SVM NN SVM NN SVM NN SVM NN
06.03% 08.69% | 85.22% 87.46% | 92.47% OL.41% | 79.85% 95.76% | 67.81% 90.97%
96.23% 98.63% | 95.3206  74.79% | 92.12% 91.82% | 86.38%  74.18% | 69.37% 91.47%
98.850  96.95% | 98.75%  87.29% | 93.64%  90.15% | 88.24%  77.88% | 77.80%  52.81%
95.70%  98.75% | 96.83%  94.43% | 98.66%  90.32% | 90.75%  77.05% | 71.14% 91.86%
99.80%  95.08% | 84.30% 86.45% | 95.32% 91.06% | 96.29%  81.47% | 95.13%  65.28%
99.15%  98.44% | 99.47%  85.72% | 91.62%  91.07% | 89.95%  89.90% | 90.75%  94.09%
99.51%  98.91% | 99.45%  90.38% | 98.54%  96.47% | 80.04% 95.66% | 83.67% 59.00%
99.84%  99.80% | 98.89%  97.01% | 99.54%  96.07% | 95.40%  88.23% | 67.02% 91.22%
— — 08.35% 98.69% | 97.23%  95.84% | 98.65%  84.61% | 92.24% 81.35%
— — 99.72% — 99.85% — | 98.73% — 93.64% = —
— — — — 92.01% — — — 97.91%  —
— — — — 97.38% — — — 99.08%  —

TABLE III

AccURACY OFNEURAL NETWORK (NN) AND SUPPORTVECTORMACHINE (SVM) PRIMARY QUANTIZATION STEPS DETECTORS ON
COVERIMAGES FROM THE TESTING SETPQSAND SQSSTAND FOR PRIMARY AND SECONDARY QUANTIZATION STEPSRESPECTIVELY
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embedded with F5 and OutGuess algorithms. Graphs are drahrespect to the true primary quality factor.
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SQS 3
PQS | SVM NN SUM NN SVM NN SVM NN SVM NN
1 95.24% 08.56% | 86.7/5% 87.92% | 91.01% 90.95% | 78.74% 95.79% | 66.03% 90.31%
2 95.51% 98.59% | 84.17%  45.16% | 90.99% 91.67% | 65.32%  44.59% | 66.64% 90.31%
3 95.19%  67.41% | 94.15%  59.20% | 92.43%  89.78% | 81.99%  52.19% | 72.06%  36.79%
4 94.23%  98.62% | 95.12%  71.84% | 94.62%  59.41% | 83.46%  52.16% | 70.69% 90.67%
5 99.43%  78.47% | 83.99% 86.32% | 94.03%  70.68% | 91.33%  51.50% | 87.67%  40.48%
6 99.36%  76.86% | 98.26%  66.45% | 88.40%  89.93% | 85.02%  70.87% | 83.60% 68.27%
7 99.58%  61.72% | 99.47%  61.72% | 97.20%  81.09% | 77.21% 94.35% | 79.22%  42.00%
8 99.40%  72.16% | 98.92%  70.29% | 99.40%  59.26% | 93.78%  58.32% | 63.42% 88.89%
9 — — 97.56%  72.37% | 97.79%  80.80% | 97.39%  58.90% | 87.50% 58.26%
10 99.23% — 99.58% — 98.75% — 91.17%  —
11 — — — — 90.45% — — — 96.98% = —
12 — — — — 96.08% — — — 98.87% = —
TABLE IV

AccuURACY OF NEURAL NETWORK (NN) AND SUPPORTVECTORMACHINE (SVM) PRIMARY QUANTIZATION STEPS DETECTORS ON
COVERAND STEGOIMAGES FROM THE TESTING SETPQSAND SQSSTAND FOR PRIMARY AND SECONDARY QUANTIZATION STEPS
RESPECTIVELY

D. Estimation of the standard quantization matrix

The estimator of the standard quantization matri§§1
requires the knowledge of the conditional probabilitieg]at
P(Qj;|Q;;,Q3;) describing the accuracy of the detectofS?

K

of the primary quantization steps. These probabiliti
were evaluated empirically from images from the train

ing set, as noted in Section IV-C.

Figure 4 shows the accuracy calculated on imag
from the testing set as a function of the true prima;%
quality factor. We conclude that the accuracy is not mu
affected by embedding. The detection on stego imag\é'g
embedded by F5 is worse (especially on fully embedd
images) due to F5’s influence on the histogram.

All sharp drops in accuracy have the same cause
with the exception of images embedded by OutGuess
with primary quality factor75 and secondary quality G
factor80. We will discuss this case later. As explained in

171

as ij. Let us assume thap and @)’ are two primary

guantization matrices for which

cles

Izat

quality factor75. Most of the time, the primary quality
ctor is estimated a89. We denote the quantization
rices corresponding to quality fact@$, 88, and75
(89), Q(88), andQ(75), respectively. By examining
ége quantization steps @§(89) and Q(88) for frequen-
(1,7) € L, we observe thaf)(83) and Q(89) only
differ when (i, j) = (0, 1), in which caseQ}, (89) = 3,
@1(88) = 2, and Q§,(75) = 6. If all primary quan-
ion steps are correctly detecte@( is detected
6), then the estimator of the primary quality factor
il prefer the quality factor89 over 88 because the
cgnditional probabilityP(Q4, = 6|Q}, = 3,Q3;, = 3)

is larger thanP(Q}, = 6|Q};, = 2,Q3; = 3) (see
Table 1V) and all other involved probabilities are the

The drop in accuracy on images embedded by Out-
uess with the primary quality fact®b and the sec-
Section IV-B, the cases when the primary quantizatio%ndaryquamy chtoﬁ5_|s caused by t.he effeqt of embed-
1 - o ding. The majority of incorrectly estimated images have
step@;; is a divisor of the secondary quantization steLEltlrI

2 the primary quantization step is detected by defa e primary quality factor estimated 84 instead of35.

e difference between the quantization matri€gs4)
and Q(85) is for frequency(0, 1), where Qo1 (84) = 4

and Qo1 (85) = 3. Because&ly1(75) = 6, this is not the

Qij #Qly = Qij|Q?j and Q/ij|Q12ja for (i, §) € L. case of divisors discussed qbovg. From FigL(lce)Arye

see that the accuracy of estimation improves on images
Let wus further assume that for instancavith shorter messages, which confirms our hypothesis
[T ec P(Q}1Qi5, Q%) > Tl er P(Q;1Qi;,QF;)-  about the influence of embedding.
When detecting images with primary quantization Table V shows the average decrease in the detection
matrix Q' (if all quantization steps are detectechccuracy when the PQF estimator was first applied
correctly), the ML estimator will incorrectly outpup only to stego images and then only to cover images.
instead of@’ becausel) has a larger likelihoodThis Because F5 changes the histogram of DCT coefficients,
failure is, fortunately, not going to impact subsequenhe accuracy of the PQF estimator is worse for F5 em-
steganalysis because when the primary quantizatibedded images than for OutGuess, which preserves the
steps are divisors of the secondary quantization stepipbal histogram. The accuracy of the PQF estimator is
the impact of double-compression is negligible. expected to be even lower for steganographic techniques

We illustrate this phenomenon on an example of inthat significantly modify the histograms. It is unlikely,

ages with the primary quality fact88 and the secondary however, that such techniques will ever be developed
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SQF 75 SQF 80

Algorithm Mean Std Mean Std [4] J. Fridrich. Feature-based steganalysis for JPEG imanel its
FS 100% 107 1424 670 1117 implications for future design of steganographic schemés.
F5 50% ’ 482 752 214 333 J. Fridrich, editor,Information Hiding, 6th International Work-
bt : : : : shop volume 3200 olLecture Notes in Computer Sciengmges
F5 25% 3.82 6.30 1.39 2.40 67-81, 2005.
OutGuess 100%  5.12 12.08  3.76 8.55 [5] J. Fridrich, M. Goljan, and D. Hogea. Steganalysis of GPE
OutGuess 50% 2.06 6.91 0.36 1.84 images: Breaking the F5 algorithm. In F. A. P. Petitcolastoed
OutGuess 25% 0.37 167 0.11 1.48 Information Hiding, 5th International Workshppolume 2578 of
TABLE V Lecture Notes in Computer Sciengemges 310-323, 2002.
MEAN AND STANDARD DEVIATION OF THE DROP IN ACCURACY oF  [6] J. Fridrich and J. Lukas. Estimation of primary quaation
THE PRIMARY QUALITY FACTOR ESTIMATOR WHEN APPLYING IT matrix in double compressed JPEG imagesDlgital Forensic
ONLY TO STEGO IMAGES AND ONLY TO COVER IMAGES Research Worksho2003.

[7] D. Fu, Y. Q. Shi, and Q. Su. A generalized Benford’'s law for
JPEG coefficients and its applications in image forensics. |
E. Delp and P. W. Wong, editorBroceeedings of SPIE Electronic
Imaging, Security and Watermarking of Multimedia Contdits
because steganography significantly disturbing the first volume 6505, pages 1L1-1L11, 2007.

ot : ; ] S. Hetzl and P. Mutzel. A graph-theoretic approach tgateg-
order statistics would likely be detectable using othef® raphy. In J. Dittmann et al., edito€ommunications and Multi-

means. media Security. 9th IFIP TC-6 TC-11 International Confaren
volume 3677 ofLecture Notes in Computer Sciengages 119—
VI. CONCLUSION 128, 2005. - . .

) [9] A. L. Jain. Fundamentals of Digital Image Processirgrentice-

The contribution of this paper is two-fold. First, we  Hall, 1989.

. . 0] W. Pennebaker and J. MitchellPEG: Still Image Data Com-
presented a reliable method for detection of doubl& pression Standardvan Norstrand Reinhold, 1993.

compressed JPEG images. It is based on classificatiof] T. Pevny and J. Fridrich. Determining the Stego Alguri for
using support vector machines with features derived from JPEG Images. I8pecial Issue of IEE Proceedings — Information

: ‘ot T Security volume 153, pages 75-139, 2006.
the first order statistics of individual DCT modes o 12] A.C. PopescuStatistical Tools for Digital Image Forensic®hD

low-frequency DCT coefficients. An important feature ~ thesis, Dartmouth College, Hanover, New Hampshire, Deeemb
of the proposed method is its ability to detect double- 2004

. . 3] A.C. Popescu and H. Farid. Statistical tools for digfaaensics.
compression not onIy for cover Images but also f&[ In J. Fridrich, editor, Information Hiding, 6th International

images processed using steganographic algorithms. By workshop volume 3200 ofLecture Notes in Computer Science

comparing our method to prior art, we showed that the =pages 128-147, 2005. o _
proposed solutioq offers h?gher accuracy. . (14] H‘SE,r\lolg(o‘cé'ecgﬁsng;ﬁpsgﬁ'g%tofaﬂsmal steganalysin 10th
Second, we built a maximum likelihood estimator ofi5] p. Sallee. Model based steganography. In Kalker, lak, @nd
the primary quality factor in double-compressed JPEG Yong Man Ro, editors|nternational Workshop on Digital Wa-
images. Since the main application is steganalysis, the ;e;g“eir"l‘gi_“fg%mgoé?g ol.ecture Notes in Computer Science
estimator was constructed to work for both cover angs] p. Sallee. Model-based methods for steganography t@gdrsal-
stego images. We evaluated the accuracy of the estimator Ysis. Int. J. Image Graphics5(1):167-190, 2005.
on a large test of JPEG images with primary qualiy 7 05 G808 om0 8 B e S Btmann and
factors and2 secondary quality factors (the default 3. Fridrich, editorsProceedings ACM Multimedia and Security
factors of F5 and OutGuess). Generally, the accuracy is  Workshop pages 37-47. ACM Press, New York.

better thar00% and is not much affected by embeddinélg] gegﬁii%??ﬁhicﬂ?goﬁ;ﬁ;l% ﬁg?ﬂtgsffxg Zﬁ%}rgﬁt‘;s
operations. There exist combinations of the primary and Hiding, 4th International Workshgpvolume 2137 ofLecture
secondary quality factors, where the accuracy is low. Notes in Computer Sciencpages 289-302, 2001.

They all correspond to situations when the effects of

double-compression are negligible and thus the failures

do not influence subsequent steganalysis. To the best

of our knowledge, this is the first complete solution to

the problem of estimation of the primary quality factor

in double-compressed JPEG images in the context of

steganalysis.

REFERENCES

[1] JP Hide&Seek. http://linux01.gwdg.de/ alatham/stégml.

[2] C.J.C. Burges. A tutorial on support vector machinesp@attern
recognition. Data Mining and Knowledge Discoverg(2):121—
167, 1998.

[8] Z. Fan and R. L. de Queiroz. Identification of bitmap com-
pression history: JPEG detection and quantizer estimatieBE
Transactions on Image Processjnt2(2):230-235, 2003.



