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Detection of double-compression in JPEG
images for applications in steganography

Tomáš Pevný and Jessica Fridrich

Abstract—This paper presents a method for detection
of double JPEG compression and a maximum likelihood
estimator of the primary quality factor. These methods are
essential for construction of accurate targeted and blind ste-
ganalysis methods for JPEG images. The proposed methods
use support vector machine classifiers with feature vectors
formed by histograms of low-frequency DCT coefficients.
The performance of the algorithms is compared to selected
prior art.

I. I NTRODUCTION

Double-compression in JPEG images occurs when a
JPEG image is decompressed to the spatial domain and
than resaved with a different (secondary) quantization
matrix. We call the first quantization matrix the primary
quantization matrix. There are several reasons why we
are interested in detecting double-compressed JPEG im-
ages and in the related problem of estimation of the
primary quantization matrix.

First, detection of double compression is a foren-
sic tool useful for recovery of the processing history.
Double-compressed images are also frequently produced
during image manipulation. By detecting the traces of
recompression in individual image segments, we may
be able to identify the forged region because the non-
tampered part of the image will exhibit traces of double-
compression [13], [17].

Second, some steganographic algorithms (Jsteg,
F5 [18], OutGuess [14]) always decompress the cover
JPEG image into the spatial domain before embedding.
During embedding, the image is compressed again, usu-
ally with a default quantization matrix (F5 uses default
quality factor 80, OutGuess75). If the quantization
matrix used during embedding differs from the original
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matrix, the resulting stego image is double-compressed.
The statistics of DCT coefficients in double-compressed
JPEG images may significantly differ from the statistics
in single-compressed images. These differences neg-
atively influence the accuracy of some steganalyzers
developed under the assumption that the stego image has
been compressed only once. This is especially true for
steganalysis methods based on calibration [5], which is
a process used to estimate macroscopic properties of the
cover image from the stego image. If the steganographic
method performs double compression, the calibration
process has to be modified to mimic what happened
during embedding, which requires the knowledge of
the primary quantization matrix. Ignoring the effects of
double-compression may lead to extremely inaccurate
steganalysis results [5]. Thus, methods for detection
of double-compression and estimation of the primary
quantization matrix are essential for design of accurate
steganalysis.

So far, all methods proposed for detection of double-
compression and for estimation of the primary quanti-
zation matrix [7], [13], [6], [5] were designed under the
assumption that the image under investigation is a cover
image (not embedded). Because the act of embedding
further modifies the statistics of DCT coefficients, there
is a need for methods that can properly detect double
compression in stego images and estimate the primary
quantization matrix. Methods presented in this paper
were developed to handle both cover and stego images,
which makes them particularly suitable for applications
in steganalysis.

This paper is organized as follows. We briefly re-
view the basics of JPEG compression in Section II and
continue with the discussion of prior art in Section III.
Section IV describes the proposed methods for detecting
double-compressed images and estimating the primary
quantization matrix. In Section V, we show experimental
results and compare them to prior art. We also discuss
limitations of the proposed methods and their impact
on subsequent steganalysis. Section VI contains conclu-
sions.

II. BASICS OFJPEG COMPRESSION

The JPEG format is the most commonly used image
format today. In this section, we only briefly outline the
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basic properties of the format that are relevant to our
problem. A detailed description of the format can be
found in [10].

During JPEG compression, the image is first divided
into disjoint 8 × 8 pixel blocks Brs, r, s = 0, . . . , 7.
Each block is transformed using the Discrete Cosine
Transformation (DCT)

dij =

7
∑

r,s=0

w(r)w(s)

4
cos

π

16
r(2i+1) cos

π

16
s(2j+1)Brs

where w(0) = 1√
2

and w(r > 0) = 1. The DCT
coefficientsdij are then divided by quantization steps
stored in the quantization matrixQij and rounded to
integers

Dij = round

(

dij

Qij

)

, i, j ∈ {0, . . . , 7}.

We denote thei, j-th DCT coefficient in thek-th block
as Dk

ij , k ∈ {1, . . . , l}, where l is the number of all
8×8 blocks in the image. The pair(i, j) ∈ {0, . . . , 7}×
{0, . . . , 7} is called thespatial frequency(or mode) of
the DCT coefficient. The JPEG compression finishes by
ordering the quantized coefficients along a zig-zag path,
encoding them, and finally applying lossless compres-
sion.

The decompression works in the opposite order. After
reading the quantized DCT blocks from the JPEG file,
each block of quantized DCT coefficientsD is multiplied
by the quantization matrixQ, d̂ij = Qij · Dij , and
the Inverse Discrete Cosine Transformation (IDCT) is
applied tod̂ij . The values are finally rounded to integers
and truncated to a finite dynamic range (usually[0, 255]).
The block of decompressed pixel valuesB̂ is thus

B̂ = trunc(round(IDCT(Qij ·Dij))), i, j ∈ {0, . . . , 7}.

Due to the rounding and truncation involved in compres-
sion and decompression,̂B will in general differ from
the original blockB.

Although there are not any standardized quantization
matrices, most implementations of JPEG compression
use a set of quantization matrices indexed by aquality
factor from the set{1, 2, . . . , 100}. Theses matrices are
used in the reference implementation1 provided by the
Independent JPEG Group. We refer to them asstandard
matrices.

We say that a JPEG image has beendouble-
compressedif the JPEG compression was applied twice,
each time with a different quantization matrix and with
the same alignment with respect to the8×8 grid. We call
the first matrixQ1 the primary quantization matrixand
the second matrixQ2 thesecondary quantization matrix.

1ftp://ftp.simtel.net/pub/simtelnet/msdos/graphics/jpegsr6.zip

Additionally, we say that a specific DCTcoefficientDij

was double-compressed if and only ifQ1

ij 6= Q2

ij .

In a single-compressed JPEG image (only compressed
with quantization matrixQ1), the histogram of DCT
coefficients for a fixed modei, j, Dk

ij , k ∈ {1, . . . .l},
is well-modeled with a quantized generalized Gaussian
distribution [9]. When a single-compressed JPEG is
decompressed to the spatial domain and compressed
again with another quantization matrixQ2, Q1 6= Q2,

the histograms of DCT coefficients no longer follow the
generalized Gaussian distribution; they exhibit artifacts
caused by double-compression.

Some of the most visible and robust artifacts in the
histogram of DCT coefficients arezeros and double-
peaks [6]. Zeros occur when some multiples ofQ2

ij

in the double-compressed image are not present (see
the odd multiples in Figure1(b)), which occurs when
(Q2

ij |Q
1

ij) ∧ (Q1

ij 6= Q2

ij), wherea|b means “a divides
b.” Depending on the image and the values of the
quantization steps, the zeros may take the form of local
minimum rather than exact zeros.

A double peak occurs when a multiple ofQ1

ij falls
in the middle of two multiples ofQ2

ij and no other
multiple of Q2

ij is closer. Formally, there exist integers
u, v ≥ 0, such thatuQ1

ij = 1

2

(

(v − 1)Q2

ij + vQ2

ij

)

. In
this case, the multipleuQ1

ij contributes evenly to both
(v − 1)Q2

ij andvQ2

ij . Figures1(c,d) show examples of
double-peaks occurring at multiplesv = 2, 5, 8, . . .. For
a more detailed description of the impact of double-
compression on the DCT histogram, we refer to [6], [13].

The examples shown in Figure 1 demonstrate that
different combinations of primary and secondary quan-
tization steps create distinct patterns in the histogram
of DCT coefficients. Consequently, it is natural to use
tools for pattern recognition to match histogram patterns
to primary quantization steps. This idea was already
exploited in [6] and is used in this paper as well.

III. PRIOR ART

To the best of our knowledge, the first work dedicated
to the problem of estimation of the primary quantization
matrix in double-compressed images is due Fridrich et
al. [6]2. Instead of restoring the whole primary quantiza-
tion matrix, the authors focused on estimation of the pri-
mary quantization stepsQ1

ij for low-frequency DCT co-
efficients(i, j) ∈ {(0, 1), (1, 1), (1, 0)}, because the esti-
mates for higher frequencies become progressively less
reliable due to insufficient statistics. Three approaches
were discussed. Two of them were based on matching
the histograms of individual DCT coefficients of the
inspected image with the histograms calculated from

2The problem of detection of previous (single) JPEG compression
from bitmap images was also investigated in [3].
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(c) Q1

ij = 3, Q2

ij = 4: histogram with double peaks at multiples
(1, 2), (4, 5), (7, 8) . . .
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(d) Q1

ij = 6, Q2

ij = 4: histogram with double peaks at multiples
(1, 2), (4, 5), (7, 8), . . .

Fig. 1. Examples of double-compression artifacts in histograms of absolute values of DCT coefficients for fixed mode(0, 1).

estimates obtained by calibration [4], [5] followed by
simulated double-compression. Both histogram matching
approaches were outperformed by the third method that
used a collection of neural networks. One neural network
was trained for each value of the secondary quantization
step of interest,Q2

ij ∈ {1, . . . , 9}, to recognize the
primary quantization stepQ1

ij in the range[2, 9], for
Q2

ij ∈ {2, . . . , 9}, and in the range[1, 9], for Q2

ij = 1.

All neural networks used the same input feature vector

x = {hij(2), hij(3), . . . , hij(15)}, (1)

wherehij(m) denotes the number of occurrences ofm ·
Q2

ij among absolute values of DCT coefficientsDk
ij in

the inspected JPEG image.

hij(m) =

l
∑

k=0

δ
(
∣

∣Dk
ij

∣

∣ − m · Q2

ij

)

, (2)

where δ is the indicator function,δ(x) = 1 if x = 0
and δ(x) = 0 when x 6= 0. Note that the fea-
ture vector (1) does not includeh(0) and h(1). The
reported accuracy of this neural network detector on
cover JPEG images was better than99% for estima-
tion of low frequency quantization steps with frequen-
cies (i, j) ∈ {(0, 1), (1, 1), (1, 0)}, and better than
95% for quantization steps for frequencies(i, j) ∈
{(2, 0), (2, 1), (1, 2), (0, 2)}.

Recently, Shi et al. [7] proposed an idea for recov-
ery of compression history of images based on the
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observation that the distribution of the first (leading)
digit3 of DCT coefficients in single-compressed JPEG
images of natural scenes follows the generalized Benford
distribution

p(x) = N · log

(

1 +
1

s + xq

)

x ∈ {1, . . . , 9}, (3)

where q and s are free parameters andN is a nor-
malization constant. This fact is used to estimate the
quantization matrixQ of images previously JPEG com-
pressed but currently stored in some other lossless image
format (such as TIFF or PNG) in the following manner.
The inspected image is compressed with different quality
factorsQt. When Qt 6= Q, the image will be double-
compressed and the generalized Benford law (3) will be
violated. On the other hand, whenQt = Q, the first
digit of DCT coefficients will follow the generalized
Benford distribution for someq and s, because the
statistics of DCT coefficients is not affected by double-
compression. The publication also proposes to use the
histogram of the first digit of DCT coefficients as a
feature set (further called the Benford feature set) for
detection of double-compressed images. In Section V,
we compare the Benford feature set to the feature set
proposed in this paper by training and evaluating the
classifiers on exactly the same database of images.

Popescu et al. [13], [12] presented another approach
for detection of double-compression in JPEG images.
The authors showed that repeated quantization intro-
duces periodic artifacts into the histogram of DCT co-
efficients of each DCT mode. This periodicity can be
detected as peaks in the Fourier domain. Unfortunately,
we were unable to obtain the implementation from the
authors and our own implementation produced results in-
compatible with those reported in [12], which prevented
us from comparing the approaches.

IV. PROPOSED APPROACH

The vast majority of steganographic techniques for
JPEG images embed messages by directly manipulating
the DCT coefficients. Most modern steganographic al-
gorithms preserve first-order statistics and thus preserve
the artifacts of double-compression. For example, Model
Based Steganography preserves models of histograms
of each DCT mode, OutGuess preserves the global
histogram of all DCT coefficients (but not necessarily the
histograms of individual DCT modes). F5 does change
the histogram but in a smooth manner, making it more
spiky. This, too, would preserve the qualitative character
of double-compression artifacts. Thus, it is reasonable

3The first digit is understood as the firstvalid digit in the decimal
representation of the number. The numbers arenot padded by zeros to
have the same number of digits. For example 2 and 25 have the same
first digit 2.

to expect that double-compression can be detected from
stego images using pattern recognition methods.

Many steganalytic methods need to know the compres-
sion history of a given stego image to produce accurate
results. Steganalysis based on calibration (estimation of
the cover image) is especially vulnerable as it may
produce completely misleading results when the effect
of double-compression is not accounted for. Reliable
detection of double-compression is also important for
so called multi-classifiers that attempt to not only detect
the presence of a secret message but also classify the
stego image to a known steganographic method. For
example, the blind multi-classifier described in [11] con-
sists of a double-compression detector and two separate
classifiers—one trained for single compressed images
and one specially built for double-compressed images.
The double-compression detector thus serves as a pre-
classification. When it decides that an image has been
double-compressed, it already points to those methods
that can produce such images (F5 and OutGuess). Mis-
takenly detecting a single-compressed image as double-
compressed may thus introduce large classification errors
for the entire multi-classifier, because it can now only
answer either cover, F5, or OutGuess. What is needed is
a double-compression detector with a low probability of
false positives, which means low probability of detect-
ing a single-compressed image as double-compressed.
False negatives (detecting a double-compressed image as
single-compressed) are much less serious because when
double-compressed images are misclassified due to lack
of presence of double-compression artifacts, the effect
of double-compression on steganalysis is also small.

The problem of double-compression detection could
be considered as a sub-problem of the primary quanti-
zation matrix estimation. We could detect whether the
image was double-compressed by comparing the esti-
mated primary quantization matrix with the secondary
quantization matrix. Unfortunately, this naı̈ve approach
is not very accurate. Better performance can be achieved
with a separate double-compression detector (further
called the DC detector) followed by the primary quality
factor estimator (the PQF estimator) applied only to
images classified as double-compressed.

The positive experience with a combination of classi-
fication tools and features formed by histograms of mul-
tiples of quantization steps in [6] steered our attention in
this direction. Because of the problem with insufficient
statistics for high-frequency DCT coefficients mentioned
in the previous section, we also limit the set of DCT
frequencies used by both the DC detector and the PQF
estimator to the set
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L = {(1, 0), (2, 0), (3, 0), (0, 1), (1, 1),

(2, 1), (0, 2), (1, 2), (0, 3)} .

Before we describe the details of our method, we
briefly discuss another possibility to estimate the primary
quantization matrix from the statistics of DCT coeffi-
cientsDij even though we do not pursue this method
in this paper. We could model the distribution of DCT
coefficients for a fixed spatial frequency in the single-
compressed image using a parametric model (e.g., gen-
eralized Gaussian) and estimate the primary quantization
step, together with the nuisance model parameters, using
the Maximum Likelihood (ML) principle and avoid
using classification altogether. While this choice does
sound tempting, the distribution of DCT coefficients may
be affected by embedding and thus the ML estimator
may produce inaccurate results because of a model mis-
match. Indeed, the F5 algorithm makes the distribution
of DCT coefficients more spiky by increasing the number
of zeros due to shrinkage. Even OutGuess modifies the
distribution of coefficients forindividual DCT modes (it
only preserves theglobal histogram).

A. Detection of double-compression

The double-compression detector is implemented us-
ing a soft-margin support vector machine (C−SVM)
with the Gaussian kernel [2]k(x, y) = exp(−γ‖x −
y‖2). Its feature vectorx consists of histograms (2) for
spatialfrequencies from the setL. Formally,

x =

{

1

Cij

(hij(0), hij(1), . . . , hij(15))

∣

∣

∣

∣

(i, j) ∈ L

}

,

where Cij are normalization constants
(

Cij =
∑15

m=0
hij(m)

)

. The dimension of this
feature set (further called the Multiple-counting feature
set) is16 × 9 = 144.

Because the DC detector is a binary classifier, it is
easy to adjust its bias towards one class. As already
mentioned in the introduction to this section, this feature
is important for applications in steganalysis.

B. Detector of primary quantization steps

The double-compression detector described in the
previous section generates binary output—the image is
either single or double-compressed. In this section, we
introduce a method for detecting the individual primary
quantization steps and then in Section IV-C, we explain
the process of matching the detected quantization steps
to the closest standard matrix.

We only detect the primary quantization steps for
spatialfrequencies from the setL. This detector consists

SQS Detectable PQS #SVMs

4 S4 = {3, 4, 5, 6, 7, 8} 15
5 S5 = {2, 3, 4, 5, 6, 7, 8, 9, 10} 36
6 S6 = {4, 5, 6, 7, 8, 9, 10, 11, 12} 36
7 S7 = {2, 3, 4, 5, 6, 7, 8, 9, 10} 36
8 S8 = {3, 5, 6, 7, 8, 9, 10, 11, 12} 36

TABLE I
PRIMARY QUANTIZATION STEPS (PQS)DETECTABLE BY THE

MULTI -CLASSIFIER FOR A GIVEN SECONDARY QUANTIZATION STEP

(SQS). THE LAST COLUMN (#SVMS) SHOWS THE NUMBER OF

BINARY SUPPORTVECTORMACHINES IN THE MULTI -CLASSIFIER.

of a collection of SVM-based multi-classifiersFQ2

ij
for

each value of the secondary quantization stepQ2

ij . In
our experiments, we created five multi-classifiers for
the secondary quantization stepsQ2

ij ∈ {4, 5, 6, 7, 8},
because this is the range of quantization steps for spatial
frequenciesL from secondary quantization matrices with
quality factors75 and80 (the default quality factors in
F5 and OutGuess).Table I shows the primary quanti-
zation steps detectable by the multi-classifiers for each
secondary quantization step and the number of SVMs in
the multi-classifier.

We note that it is possible to detect other primary
quantization stepsQ1

ij . To this end, one would have to
prepare examples of images with required combinations
of the primary Q1

ij and secondary quantizationQ2

ij

steps and appropriately extend the multi-classifierFQ2

ij

(training a set of binary classifiers as described below).
The feature vectorx for the multi-classifierFQ2

ij
is

formed by the histogram of absolute values of the first
16 multiples ofQ2

ij of all DCT coefficients|Dk
ij | for all

k = 1, . . . , l

x =
1

C
(hij(0), hij(1), . . . , hij(15)), (4)

where C is a normalization constant chosen so that
∑

15

m=0
xm = 1. The multi-classifierFQ2

ij
consists of a

collection of binary classifiers. Since there is one binary
classifier for every combination of two different primary
quantization steps, the number of binary classifiers is
(

n

2

)

, wheren is the number of classes. For example, for
the secondary quantization step4, we classify inton = 6
classes, for which we need

(

6

2

)

= 15 binary classifiers.
During classification, the feature vector (4) is presented
to all binary classifiers. Every binary classifier gives vote
to one primary quantization step. At the end, the votes
are counted and the quantization step with most votes is
selected as the winner. Ties are resolved by selecting the
primary quantization step randomly from the set of steps
with the highest number of votes to avoid creating a bias
towards one class. All binary classifiers are soft-margin
Support Vector Machines (C−SVM) with the Gaussian
kernel.

Note that the feature vector (4) cannot distinguish
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between the following three cases:Q1

ij is a divisor of
Q2

ij , Q1

ij = 1, and Q1

ij = Q2

ij . Thus, we classify all
these cases into one common classQ1

ij = Q2

ij . This
phenomenon imposes a fundamental limitation on the
performance of the detector. Fortunately, the double-
compressed image in all these three cases does not
exhibit any discernible traces of double-compression,
and hence influences steganalysis in a negligible manner.
In other words, our failure to distinguish between these
cases is not detrimental for steganalysis.

C. Matching the closest standard quantization matrix

The primary quantization step detector presented in
the previous section only estimates the primary quan-
tization steps for a small set of spatial frequencies
from the setL. Since we wish to recover the whole
quantization matrix (e.g., in order to carry out calibration
in steganalysis), a procedure is needed that will find the
whole primary quantization matrix. Moreover, because
the detection will sometimes produce incorrect values
of the primary quantization steps, the procedure should
reveal such outliers and replace them with correct values.
We achieve both tasks by finding the closest standard
quantization matrix using a Maximum Likelihood esti-
mator.

Denoting the detected and the true primary quanti-
zation steps aŝQ1

ij and Q1

ij , respectively, the closest
standard quantization matrix can be obtained using the
ML estimator

Q̂ = arg max
Q1∈T

∏

i,j∈L
P (Q̂1

ij |Q
1

ij , Q
2

ij),

where T is the set of standard quantization matrices.
The set T can be modified to incorporate available
side information (for example some camera manufac-
turers use customized quantization matrices). The value
P (Q̂1

ij |Q
1

ij , Q
2

ij) is the probability that the classifier
detects the primary quantization step̂Q1

ij when the cor-
rect primary quantization step isQ1

ij and the secondary
quantization step isQ2

ij . These probabilities can be
empirically estimated from images used for training the
detector.

We note that it is possible to incorporate a priori
knowledge about the distribution of primary quantization
tables into the estimation procedure and switch to a MAP
estimator. This a priori information could be obtained by
crawling the web and collecting the statistics about the
JPEG quality tables. In this paper, however, we do not
pursue this approach.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results and
compare them to selected prior art. All results in this sec-
tion, including the prior art evaluation, were calculated

on a database created from6006 raw images. Before
conducting any experiments, the images were divided
into a training subset containing3500 raw images and a
testing subset containing2506 raw images. This allowed
us to estimate the performance on images that were
never used in any form in the training phase. The testing
subset contains images taken by different cameras and
photographers.

The double-compressed stego images were created by
OutGuess and F5. We embedded message lengths100%,

50%, and 25% of embedding capacity for each algo-
rithm and image. These two steganographic algorithms
were selected because their implementations produce
double-compressed images. The double-compressed im-
ages were prepared with34 different primary quality
factorsQ34 = {63, 64, . . . , 93, 94, 96, 98} and with two
different secondary quality factors:75, which is the
default quality factor of OutGuess, and80, the default
quality factor of F5.

Because we need to test the performance of the DC
detector also on single-compressedimages to evaluate its
false positive rate, we also prepared single-compressed
images with quality factors75 and 80 embedded
by the following steganographic algorithms: F5 [18],
Model Based Steganography without [15] (MBS1) and
with [16] deblocking (MBS2), JP Hide&Seek [1], Out-
Guess [14], and Steghide [8]. The embedded message
length was chosen as100%, 50%, and 25% of the
embedding capacity for each algorithm. All MBS2 im-
ages were embedded only with30% of the capacity of
MBS1, because during embedding of longer messages
the deblocking part of MBS2 usually fails.

The resulting database,which contains both double-
and single-compressed images,contains cover images
with the same combinations of primary and secondary
quality factors as the stego images. The total number of
processed images was34×2×7×(3500+2506)+17×
(3500 + 2506) ≈ 3, 000, 000.

A. Double-compression detector

In this section, we describe the details for constructing
the detector of double-compressed images with sec-
ondary quality factors75 and 80 (see Section IV-A).
Due to extensive computational complexity, instead of
training a general double-compression detector forboth
quality factors, we decided to train a special double-
compression detector for each secondary quality factor
(The complexity of training aC−SVM is O(N3), where
N is the number of examples.).

All classifiers were implemented using the soft-margin
C−SVM and were trained on10000 examples of single-
compressed images (cover images and images embedded
by the six aforementioned steganographic algorithms)
and on10000 examples of double-compressed images
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(cover images and images embedded by F5 and Out-
Guess). The hyper-parametersC andγ were determined
by a grid-search on the multiplicative grid

(C, γ) ∈
{

(2i, 2j)|i ∈ {0, . . . , 19}, j ∈ {−7, . . . , 5}
}

,

combined with5−fold cross-validation.
Figure 2 shows the accuracy of the DC detector on

double-compressed JPEG images from the testing set.
We can see that the accuracy on cover images and images
embedded by OutGuess is very good. The accuracy on
F5 images is worse, especially on images containing
longer messages. We attribute this loss of accuracy to
the fact that F5 alters the shape of histograms of DCT
coefficients. As the primary quality factor increases, ar-
tifacts of double-compression are becoming more subtle
and the accuracy of the detector decreases, which is to
be expected.

In Figure 2, we can observe sharp drops in the accu-
racy of the detector on images with primary quality fac-
tors96 and98, and on images with primary quality factor
74 and secondary quality factor75. These sharp drops
correspond to situations when the histograms of DCT
coefficients are not affected by double-compression—
all primary quantization steps for frequencies fromL
are divisors of the secondary quantization steps. The
quantization steps for all9 frequencies fromL for
standard matrices with quality factors96 and98 are all
ones. Similarly, the quantization steps in the standard
quantization matrices with quality factors74 and 75
satisfyQij(74) = Qij(75), (i, j) ∈ L. Consequently, the
decision of the detector is correct, since in these cases,
the DCT coefficients inL are not double-compressed.
We note that we avoided using images with these com-
binations of quality factors in the training set.

Figure 3 shows the accuracy of the double-
compression detector on single-compressed JPEG im-
ages embedded by various steganographic algorithms.
Almost all of the tested steganographic algorithms pre-
serve the histogram of DCT coefficients, which helps
the detector to maintain its good accuracy. The only
exception is F5 already commented upon above.

B. Benford features

In Section III, we mentioned an approach proposed
by Shi et al. [7] to use the histogram of the distribution
of the first digit of DCT coefficients as a feature vector
for a classifier detecting double-compression. In order to
compare Benford features to Multiple-counting features
described in Section IV-A, we prepared twoC−SVM
classifiers—one for each feature set. Both classifiers
were trained on cover images with the (secondary)
quality factor75. The size of the training set was6800
examples.

Benford Multiple

Single-compressed 61.74% 98.64%
Double-compressed 30.91% 97.11%

TABLE II
ACCURACY OF DOUBLE-COMPRESSION DETECTOR EMPLOYING

BENFORD AND MULTIPLE-COUNTING FEATURES. DETECTORS ARE

TRAINED AND TESTED ON COVER IMAGES ONLY.

Table II shows the detection accuracy of both clas-
sifiers calculated on images from the testing set. We
excluded double-compressed images with primary qual-
ity factors 74, 96, and 98 because DCT coefficients
with spatialfrequencies inL are not technically double-
compressed in those cases. Table II shows that while
the performance of the Benford features on our database
of cover images is close to random guessing with bias
towards the single-compressed class, the accuracy of
Multiple-counting features is about98%.

C. Estimation of primary quantization coefficients

This section presents experimental results of the de-
tector of the primary quantization steps. As described
in Section IV-B, the detector is implemented by a
collection of “max-wins” multi-classifiers, where each
multi-classifier consists of the set of soft-margin Sup-
port Vector Machines (C−SVM) with the Gaussian
kernel. The training set for eachC−SVM contained
20000 examples—10000 from each class. The hyper-
parametersC and γ were estimated by means of a
5−fold cross-validation on the multiplicative grid

(C, γ) ∈
{

(2i, 2j)|i ∈ {4, . . . , 18}, i ∈ {−8, . . . , 6}
}

.

For training, we usedC andγ corresponding to the point
with the least cross-validation error.

Tables III and IV compare the accuracy of the SVM-
based primary quantization step detector with the Neural
Network (NN) detector4 from [6] on images from the
testing set. The comparison is done for the secondary
quantization steps 4, 5, 6, 7, and 8. The NN detector
detects only the quantization steps in the range[1, 9].
We have to point out that while the SVM detector was
trained on cover and stego images, the NN detector was
trained on cover images only. Because of this difference,
we present the results on a mixed database of cover and
stego images (Table IV) and on cover images only (Ta-
ble III). In most cases, the SVM based detector outper-
formed the NN detector. The rare occasions when the NN
detector gave better results correspond to the situation
when the primary quantization step was a divisor of the
secondary step. As explained in Section IV-B, incorrect
primary step detection in these cases has virtually no
influence on steganalysis.

4The trained detector was kindly provided to us by the authorsof [6].
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(a) F5, secondary quality factor 75
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(b) F5, secondary quality factor 80
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(c) OutGuess, secondary quality factor 75
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(d) OutGuess, secondary quality factor 80
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(e) Cover, secondary quality factor 75

cover

Primary Quality Factor

D
et

ec
tio

n
A

cc
ur

ac
y

0

20

40

60

80

80

100

65 70 75 85 90 95

(f) Cover, secondary quality factor 80

Fig. 2. Accuracy of the double-compression detector for secondary quality factors 75 and 80 on double-compressed coverimages and images
embedded with F5 and OutGuess algorithms. Images with primary quality factor equal to the secondary quality factor are not double-compressed,
which means that in this case, the correct answer of the detector is single-compressed. Graphs are drawn with respect to the primary quality
factor.
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Fig. 3. Accuracy of the double-compression detector on single-compressed JPEG images with quality factors75 and80. Note that the range
of Y axis is 90% to 100%.

SQS 4 5 6 7 8
PQS SVM NN SVM NN SVM NN SVM NN SVM NN

1 96.03% 98.69% 85.22% 87.46% 92.47% 91.41% 79.85% 95.76% 67.81% 90.97%
2 96.23% 98.63% 95.32% 74.79% 92.12% 91.82% 86.38% 74.18% 69.37% 91.47%
3 98.85% 96.95% 98.75% 87.29% 93.64% 90.15% 88.24% 77.88% 77.80% 52.81%
4 95.70% 98.75% 96.83% 94.43% 98.66% 90.32% 90.75% 77.05% 71.14% 91.86%
5 99.80% 95.08% 84.30% 86.45% 95.32% 91.06% 96.29% 81.47% 95.13% 65.28%
6 99.15% 98.44% 99.47% 85.72% 91.62% 91.07% 89.95% 89.90% 90.75% 94.09%
7 99.51% 98.91% 99.45% 90.38% 98.54% 96.47% 80.04% 95.66% 83.67% 59.00%
8 99.84% 99.80% 98.89% 97.01% 99.54% 96.07% 95.40% 88.23% 67.02% 91.22%
9 — — 98.35% 98.69% 97.23% 95.84% 98.65% 84.61% 92.24% 81.35%
10 — — 99.72% — 99.85% — 98.73% — 93.64% —
11 — — — — 92.01% — — — 97.91% —
12 — — — — 97.38% — — — 99.08% —

TABLE III
ACCURACY OF NEURAL NETWORK (NN) AND SUPPORTVECTORMACHINE (SVM) PRIMARY QUANTIZATION STEPS DETECTORS ON

COVERIMAGES FROM THE TESTING SET. PQSAND SQSSTAND FOR PRIMARY AND SECONDARY QUANTIZATION STEPS, RESPECTIVELY.
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(a) F5, secondary quality factor 75
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(b) F5, secondary quality factor 80
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(c) OutGuess, secondary quality factor 75
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(d) OutGuess, secondary quality factor 80
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(e) Cover, secondary quality factor 75
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(f) Cover, secondary quality factor 80

Fig. 4. Accuracy of primary quality factor estimator for secondary quality factors75 and80 on double-compressed cover images and images
embedded with F5 and OutGuess algorithms. Graphs are drawn with respect to the true primary quality factor.
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SQS 4 5 6 7 8
PQS SVM NN SVM NN SVM NN SVM NN SVM NN

1 95.24% 98.56% 86.75% 87.92% 91.01% 90.95% 78.74% 95.79% 66.03% 90.31%
2 95.51% 98.59% 84.17% 45.16% 90.99% 91.67% 65.32% 44.59% 66.64% 90.31%
3 95.19% 67.41% 94.15% 59.20% 92.43% 89.78% 81.99% 52.19% 72.06% 36.79%
4 94.23% 98.62% 95.12% 71.84% 94.62% 59.41% 83.46% 52.16% 70.69% 90.67%
5 99.43% 78.47% 83.99% 86.32% 94.03% 70.68% 91.33% 51.50% 87.67% 40.48%
6 99.36% 76.86% 98.26% 66.45% 88.40% 89.93% 85.02% 70.87% 83.60% 68.27%
7 99.58% 61.72% 99.47% 61.72% 97.20% 81.09% 77.21% 94.35% 79.22% 42.00%
8 99.40% 72.16% 98.92% 70.29% 99.40% 59.26% 93.78% 58.32% 63.42% 88.89%
9 — — 97.56% 72.37% 97.79% 80.80% 97.39% 58.90% 87.50% 58.26%
10 — — 99.23% — 99.58% — 98.75% — 91.17% —
11 — — — — 90.45% — — — 96.98% —
12 — — — — 96.08% — — — 98.87% —

TABLE IV
ACCURACY OF NEURAL NETWORK (NN) AND SUPPORTVECTORMACHINE (SVM) PRIMARY QUANTIZATION STEPS DETECTORS ON

COVERAND STEGOIMAGES FROM THE TESTING SET. PQSAND SQSSTAND FOR PRIMARY AND SECONDARY QUANTIZATION STEPS,
RESPECTIVELY.

D. Estimation of the standard quantization matrix

The estimator of the standard quantization matrix
requires the knowledge of the conditional probabilities
P (Q̂1

ij |Q
1

ij , Q
2

ij) describing the accuracy of the detector
of the primary quantization steps. These probabilities
were evaluated empirically from images from the train-
ing set, as noted in Section IV-C.

Figure 4 shows the accuracy calculated on images
from the testing set as a function of the true primary
quality factor. We conclude that the accuracy is not much
affected by embedding. The detection on stego images
embedded by F5 is worse (especially on fully embedded
images) due to F5’s influence on the histogram.

All sharp drops in accuracy have the same cause,
with the exception of images embedded by OutGuess
with primary quality factor75 and secondary quality
factor80. We will discuss this case later. As explained in
Section IV-B, the cases when the primary quantization
stepQ1

ij is a divisor of the secondary quantization step
Q2

ij , the primary quantization step is detected by default
as Q2

ij . Let us assume thatQ and Q′ are two primary
quantization matrices for which

Qij 6= Q′
ij ⇒ Qij |Q

2

ij andQ′
ij |Q

2

ij , for (i, j) ∈ L.

Let us further assume that for instance
∏

i,j∈L P (Q̂1

ij |Qij , Q
2

ij) >
∏

i,j∈L P (Q̂1

ij |Q
′
ij , Q

2

ij).
When detecting images with primary quantization
matrix Q′ (if all quantization steps are detected
correctly), the ML estimator will incorrectly outputQ
instead ofQ′ becauseQ has a larger likelihood.This
failure is, fortunately, not going to impact subsequent
steganalysis because when the primary quantization
steps are divisors of the secondary quantization step,
the impact of double-compression is negligible.

We illustrate this phenomenon on an example of im-
ages with the primary quality factor88 and the secondary

quality factor75. Most of the time, the primary quality
factor is estimated as89. We denote the quantization
matrices corresponding to quality factors89, 88, and75
asQ(89), Q(88), andQ(75), respectively. By examining
the quantization steps ofQ(89) andQ(88) for frequen-
cies (i, j) ∈ L, we observe thatQ(88) andQ(89) only
differ when (i, j) = (0, 1), in which caseQ1

01
(89) = 3,

Q1

01
(88) = 2, and Q2

01
(75) = 6. If all primary quan-

tization steps are correctly detected (Q̂1

01 is detected
as 6), then the estimator of the primary quality factor
will prefer the quality factor89 over 88 because the
conditional probabilityP (Q̂1

01
= 6|Q1

01
= 3, Q2

01
= 3)

is larger thanP (Q̂1

01
= 6|Q1

01
= 2, Q2

01
= 3) (see

Table IV) and all other involved probabilities are the
same.

The drop in accuracy on images embedded by Out-
Guess with the primary quality factor85 and the sec-
ondary quality factor75 is caused by the effect of embed-
ding. The majority of incorrectly estimated images have
the primary quality factor estimated as84 instead of85.
The difference between the quantization matricesQ(84)
and Q(85) is for frequency(0, 1), whereQ01(84) = 4
andQ01(85) = 3. BecauseQ01(75) = 6, this is not the
case of divisors discussed above. From Figure 4(c), we
see that the accuracy of estimation improves on images
with shorter messages, which confirms our hypothesis
about the influence of embedding.

Table V shows the average decrease in the detection
accuracy when the PQF estimator was first applied
only to stego images and then only to cover images.
Because F5 changes the histogram of DCT coefficients,
the accuracy of the PQF estimator is worse for F5 em-
bedded images than for OutGuess, which preserves the
global histogram. The accuracy of the PQF estimator is
expected to be even lower for steganographic techniques
that significantly modify the histograms. It is unlikely,
however, that such techniques will ever be developed
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SQF 75 SQF 80
Algorithm Mean Std Mean Std

F5 100% 11.07 14.24 6.70 11.17
F5 50% 4.82 7.52 2.14 3.33
F5 25% 3.82 6.30 1.39 2.40
OutGuess 100% 5.12 12.08 3.76 8.55
OutGuess 50% 2.06 6.91 0.36 1.84
OutGuess 25% 0.37 1.67 0.11 1.48

TABLE V
MEAN AND STANDARD DEVIATION OF THE DROP IN ACCURACY OF

THE PRIMARY QUALITY FACTOR ESTIMATOR WHEN APPLYING IT

ONLY TO STEGO IMAGES AND ONLY TO COVER IMAGES.

because steganography significantly disturbing the first
order statistics would likely be detectable using other
means.

VI. CONCLUSION

The contribution of this paper is two-fold. First, we
presented a reliable method for detection of double-
compressed JPEG images. It is based on classification
using support vector machines with features derived from
the first order statistics of individual DCT modes of
low-frequency DCT coefficients. An important feature
of the proposed method is its ability to detect double-
compression not only for cover images but also for
images processed using steganographic algorithms. By
comparing our method to prior art, we showed that the
proposed solution offers higher accuracy.

Second, we built a maximum likelihood estimator of
the primary quality factor in double-compressed JPEG
images. Since the main application is steganalysis, the
estimator was constructed to work for both cover and
stego images. We evaluated the accuracy of the estimator
on a large test of JPEG images with34 primary quality
factors and2 secondary quality factors (the default
factors of F5 and OutGuess). Generally, the accuracy is
better than90% and is not much affected by embedding
operations. There exist combinations of the primary and
secondary quality factors, where the accuracy is low.
They all correspond to situations when the effects of
double-compression are negligible and thus the failures
do not influence subsequent steganalysis. To the best
of our knowledge, this is the first complete solution to
the problem of estimation of the primary quality factor
in double-compressed JPEG images in the context of
steganalysis.
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