Game-theoretic Resource Allocation for Malicious Packet
Detection in Computer Networks

Ondfrej Vanékt,Zhengyu Yin+, Manish Jain+, Branislav BoSansky",
Milind Tambe*,Michal Péchoucek!
T Faculty of Electrical Engineering, Czech Technical University, Prague. Czech Republic.
{vanek,bosansky,pechoucek}@agents.fel.cvut.cz
* Computer Science Department, University of Southern California, Los Angeles, CA. USA.
{zhengyu.yin,manish.jain,tambe}@usc.edu

ABSTRACT

We study the problem of optimal resource allocation for
packet selection and inspection to detect potential threats in
large computer networks with multiple valuable computers
of differing importance. An attacker tries to harm these tar-
gets by sending malicious packets from multiple entry points
of the network; the defender thus needs to optimally allo-
cate his resources to maximize the probability of malicious
packet detection under network latency constraints.

We formulate the problem as a graph-based security game
with multiple resources of heterogeneous capabilities and
propose a mathematical program for finding optimal solu-
tions. Due to the very limited scalability caused by the large
attacker’s strategy space and non-linearity of the program,
we investigate solutions with approximated utility function
and propose GRANDE, a novel polynomial approximate al-
gorithm utilizing submodularity of the problem able to find
solutions with a bounded error on problem of a realistic size.

Categories and Subject Descriptors

1.2.11 [Distributed Artificial Intelligence |: Multi-agent
Systems; C.2.0 [Computer-Communication Networks]:
Security and Protection

General Terms

Algorithms, Security, Performance

Keywords

computer networks, security, game-theory, approximation
algorithm, submodularity

1. INTRODUCTION

The problem of attacks on computer systems and cor-
porate computer networks gets more pressing each year as
the sophistication of the attacks increases together with the
cost of their prevention. A number of intrusion detection
and monitoring systems is being developed in order to in-
crease the security of sensitive information, and many re-

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
June, 4-8, 2012, Valencia, Spain.

Copyright (©) 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

search works seek methods for optimizing the use of avail-
able security resources. Deep packet inspection method that
periodically selects a subset of packets in a computer net-
work for analysis, is one of such countermeasures frequently
deployed in computer networks. However, there is a cost
associated with the deep packet inspection, as it leads to
significant delays in the throughput of the network. Thus,
the monitoring system works under a constraint of limited
selection of a fraction of all packets which can be inspected.

Game-theoretic methods are appropriate for modeling such
problems and the optimal behavior of the involved parties
can be found using a well-defined concept of an equilibrium
computation. We formulate this problem as a game be-
tween two players: the attacker (or the intruder), and the
defender (the detection system). The intruder wants to gain
control over (or to disable) a valuable computer in the net-
work by scanning the network, hacking into a more vulner-
able system, and /or gaining access to further devices on the
computer network. The actions of the attacker can there-
fore be seen as sending malicious packets from a controlled
computer (termed source) to a single or multiple vulnerable
computers (termed targets). The objective of the defender
is to prevent the intruder from succeeding by selecting the
packets for inspection, identifying the attacker, and subse-
quently thwarting the attack. However, packet inspections
cause unwanted latency and hence the defender has to de-
cide where and how to inspect network traffic in order to
maximize the probability of a successful malicious packet
detection.

Existing works, namely related to game-theoretic approa-
ches in network security [1, 10] and security-games models
[8, 19], fail to provide a solution for this problem due to
lack of expressiveness or scalability. In our approach, we
follow the deep-packet-inspection scenario on an arbitrary
network topology, and consider following assumptions, that
hold in our domain: the attacker can access the computer
network through multiple entry points, can attack multiple
targets of differing importance in parallel, and the defender
has limited resources that can be used for packet analysis.
To the best of our knowledge, there is no previous work
considering together all of these aspects of the problem.

This paper offers three main contributions: (1) we pro-
pose a novel game-theoretic model that can be characterized
as a graph-based security game with multiple heterogeneous
attacker’s and defender’s resources; (2) we give a mathe-
matical program for finding the optimal solutions for this

problem formulated both as a non-zero sum and zero sum
game; and (3) we describe a polynomial approximation al-
gorithm GRANDE (GReedy Algorithm for Network DEfense)
that scales well with the increasing size of the network at
the cost of a known bounded error.

The paper is organized as follows: After reviewing re-
lated work we formalize the problem of a packet selection
for deep inspection as a two-player general-sum game and
define utility functions for both players. Next, we provide
a mathematical program for finding optimal solutions for
this problem. As program is non-linear, we follow with two
simplifications of the model. We reformulate the game as
a zero-sum game, analyze the property of submodularity of
the problem, and formulate a discretized submodular zero-
sum variant of the game. Next, we present the approximate
algorithm, GRANDE, that benefits from the submodularity
property of the discretized zero-sum variant of the game and
finds solutions with bounded error in polynomial time. We
experimentally evaluate these three algorithms and show the
trade-off in computational time and quality of found solu-
tions for our problem. Using GRANDE, we are able to com-
pute solutions for problems on networks with up to thou-
sands of nodes, hundreds of sources and tens of targets in
tens of hours.

2. RELATED WORK

Game theory has been applied to a wide range of secu-
rity problems, with many deployed applications in trans-
portation networks [9, 19]. In fact, game-theoretic models
of real-world security problems are applicable in a wide va-
riety of domains with similar attributes, including (1) in-
telligent players, (2) varying preferences among targets, (3)
and limited resources to completely protect all targets. This
has led researchers to model computer network security in
game-theoretic frameworks and a large body of work has
been created (summarized e.g. in [14]).

Most related is the recent work by Kodialam and Laksh-
man [10] since they also look at a scenario where the de-
fender conducts inspections on possible paths from a source
to a target. However, they look at a zero-sum setting for a
single source and a single target. Similarly, Otrok et al. [16]
present solutions for a domain with a single target, where
the attacker potentially uses multiple packets for an attack.
Furthermore, Chen et al. [2] present solutions for heteroge-
neous targets, with multiple attacker resources. However,
they only consider detection at the target nodes.

From the research focused on the security-games mod-
els, Korzhyk et al. [11] present a polynomial algorithm for
general-sum security games with multiple attacker resources,
however, without constraining underlying graph structure.
Jain et al. [8] present an algorithm for securing an urban net-
work with many sources and heterogeneous targets. How-
ever, this model is zero-sum and the attacker has a sin-
gle resource. Our approach mainly differs in considering a
network-security domain, where the payoffs are not necessar-
ily zero-sum and player’s utilities have more complex struc-
ture. We also model the attacker with multiple resources
used in parallel, so the defender succeeds in preventing an
attack, only if all attacker’s paths leading to a single target
are intercepted.

Our work also exploits the submodular properties of the
network security domain. Submodular functions for optimal
resource allocation optimization in adversarial environments

were first introduced by Freud et al. [6], and further devel-
oped by Krause et. al [12]. However, they do not work with
continuous defender resources and consider only zero-sum
setting.

3. FORMAL MODEL

3.1 Environment

We define the problem of the packet selection for inspec-
tion as a two-player game between the attacker and the de-
fender. The game is played on a graph G(N, E) that repre-
sents the topology of a computer network. The set of nodes
can be decomposed into three non-empty sets: (1) S is the
set of nodes that can be under the control of the attacker; (2)
T is the set of targets (SNT = 0; (3) A = N\{SUT} is the
set of all other nodes in the network. From A, the defender
can inspect the traffic only on a subset of intermediate nodes
I C A (representing, for example, firewalls, proxy servers,
etc.). For our problem, we consider only nodes from S, T, I.

The packages are routed in the network by an underly-
ing deterministic routing protocol that is not under the at-
tacker’s control; therefore, for each tuple (s,t) : s C S,t C T,
there is either a fixed single path through intermediate nodes
1, or there is a path without intermediate nodes leading from
s to t, or there is no path from s to ¢ in the graph. Thus, the
defender does not need to consider allocation of resources to
such intermediate nodes which do not lie on any path (given
set of sources and targets).

Each target t has an associated value 7 > 0 that rep-
resents the importance of the target; the defender loses 7
if ¢ is attacked successfully and gains 0 if she succeeds in
preventing the attack. The attacker gains 7 if ¢ is attacked
successfully. In case of an unsuccessful attack (i.e. a ma-
licious packet was detected by the defender), the attacker
is paying a detection penalty s > 0 associated with using
the source s. The penalty for the attacker models situations
when the defender detects that source s is being used to
send malicious packets and blocks this source from the net-
work. Due to this penalty, the attacker may choose not to
attack any of the targets', we thus define a virtual node in
the network — a dummy target tp that is directly connected
to all sources, and for which 7;, = 0. Finally, for each in-
termediate node n; we define flow f; that represents the
amount of legitimate network traffic going through n;. We
assume this amount to be constant in time? and we assume
that the amount of malicious packets sent by the attacker is
fractional compared to the legitimate network traffic®.

3.2 Players

Both players have multiple resources that they can use.
The resources of the attacker are determined by the size of
the set of sources |S| = k and we assume that the attacker
attacks from one source only a single target (however, one
target can be attacked from multiple sources). The strategy
of the attacker is to select k tuples determining which target

f 45 = 0, the attacker would attack constantly from all
sources, and not consider possible cut-off of the sources by
the defender.

2If the amount of traffic varies in time (e.g., weekends vs.
workdays, days vs. nights), we can compute multiple strate-
gies and switch between them.

3For flooding attacks, another detection/prevention coun-
termeasures than deep packet inspection are used.

will be attacked from each of the sources:
P = {(Si,ti) 18 € S,ti el i=1.. .k,Vj#si 7& Sj}

Since there is at most one path from source s to target ¢ in
the graph, we refer to attacker’s strategies as paths and de-
note them as p(,+) € I with subscript omitted if the source-
target is clear from the context. Hence, we denote C; to be
a set of such paths that originate in some source and end
in a single target t. Due to the structure of the graph, the
attacker’s resources can be seen as heterogeneous, because
not each target can be attacked from each source.

The strategy of the defender is an assignment of a vector of
probabilities X = (x1,z2,...,Zm), where for each interme-
diate node n € I; (m = |I|), the probability x; represents
the fraction of the traffic going through the node n; that
will be inspected. Therefore, the value x; also represents
the probability of the detection of a malicious packet sent
by the attacker through node n;*. The available amount of
defender’s resources is determined by the maximum amount
of inspected traffic B that is limited by the maximum al-
lowed average latency in the computer network. Therefore,
the defender is seeking her strategy under the following con-
straint:

L(X)=)Y z-fi<B

n, €l

where x; - f; represents the expected number of packets that
were inspected at node n; (for the complete network, we use
L(X) for brevity). As in the case of the attacker, the hetero-
geneity of the defender’s resources is given by the structure
of the graph — different intermediate nodes provide a mali-
cious packet detection for different groups of targets.

Finally, when designing an intrusion detection system, a
typical assumption is that the attacker will have a full knowl-
edge of techniques used by the system [18] and together with
the full knowledge of the network structure® the attacker is
able to reconstruct the defender’s strategy; the attacker thus
knows the probability with which a packet may be inspected
at each of the intermediate nodes. In this paper, we thus as-
sume Stackelberg game formulation; however, the relaxation
of these assumptions is subject to further research.

3.3 Utility Functions

The utility functions of both players primarily depend on
the probability of detection of sent malicious packets. Since
the intermediate nodes inspect packets independently, the
probability of a single malicious packet avoiding detection
along the path p is given by:

m(X,p) =[] - =) (1)

i€p
where X is a strategy of the defender in the form of allo-
cation of detection resources at nodes n;. The probability

of detecting a packet on each path for a set of paths C is
computed as:

w(x.0) =[] 1 —=(X,p)]
peC

Now, if P denotes the strategy of the attacker (i.e., paths
p; in the graph), and C¢ is the set of all paths chosen by

4This assumes having a perfect detector.
®Using standard network analysis tools, such as Nmap.

sy Ny N3 t,
ty
e

(]

S, Ny ts

Figure 1: Example graph. Two source nodes s; and s2,
three intermediate nodes n1,n2 and ns, two target nodes t;
and t2, and a dummy target node tq4.

the attacker leading to a target ¢, the utility of the defender
Ua(X, P) is defined as follows:

Ua(X,P) == > 7 [1—9(X,C)] (2)
vteT
where the term (1 — 9(X, C;)) denotes the probability that
at least one malicious packet avoids detection and reaches
target t. Therefore, the defender’s utility is an expected loss
of values of targets that were reached by malicious packets.
Analogously, we define the attacker’s utility U, (X, P) as:

Uu(X,P) = -Us(X,P) = Y 7 -[l-x(X.p)] (3)

P(s,t)EP

The attacker’s utility equals to the expected gain of values
of targets that were reached by malicious packets reduced
by the detection penalty vs on each path that the attacker
uses. Recall the attacker needs to pay a penalty when a
packet is detected, as discussed in Section 3.1. As such, the
game is not necessarily zero-sum.

3.4 Example

The example on Figure 1 depicts a simple graph with two
sources S1, $2, three intermediate nodes n1, na, n3 with flows
fi = 5,fo = 3,f3 = 5 and two targets ti,t2 with values
Tt, = 2,Tt, = 6. The number of adversary resources k = 2
and defender’s latency budget is set to B = 4. The attacker’s
strategy set is:

P={ [(s1,t1),(s2,t1)], [(51,%1), (52, %2)],
[(SlatD)v(827t1)]7[(SlvtD)7(827t2)]7
[(s1,t1), (s2,tp)], [(s1,tD), (52, tD)]}-

If, for example, the defender chooses it’s strategy to be
X = {z1 = 0.0,z2 = 0.5,xz3 = 0.1}, the latency caused is
L(X)=0.0-540.5-340.1-5= 2. If the attacker selects a
strategy P = [(s1,t1), (s2,t1)], the defender’s utility will be:
Ua(X,P)=—2-[1—(1—(1=0.0)-(1—0.1))- (1= (1—0.0)-
(1 —0.1))] = —1.98. The attacker’s utility will be (when
setting v = 1): Ug(X,P) = —Ua(X,P)—1-(1—(1-10.0) -
(1-0.1))+(1—(1—0.0)-(1—0.1)) = 1.98—0.2 = 1.78. The
optimal setting is X* = {z1 = 0.0,z2 = 0.84,xz3 = 0.296},
forcing the attacker to select P* = P, giving the defender
expected utility Ug(X™, P*) = —1.824; and the attacker’s
expected utility is Uq (X ™, P*) = 1.23.

4. SOLUTION APPROACH

First, we look for Strong Stackelberg Equilibrium (SSE)
of the full general-sum game. Because the computational
limits are reached even for small problems, we also propose
a zero-sum game model (Section 4.2). Exploring and then

utilizing the submodularity of the problem (Section 4.3), we
propose an iterative algorithm GRANDE for finding subopti-
mal solutions in polynomial time (Section 4.4).

4.1 General-sum Game Model

Given the assumptions stated above, we model the prob-
lem as a Stackelberg general-sum game between the defender
and the attacker: the defender is the leader, committing to
her strategy first, and the attacker is a follower, choosing
strategy after the leader’s commitment. The SSE gives the
optimal strategy for the leader given that the follower acts
with the knowledge of this optimal leader strategy. It is
found by solving multiple programs [3] as follows:

max Ua(X, P") (4)
st. LX) <B (5)
Uo(X,P*) >U.(X,P) VP (6)

T €[0,1] (7)

The inputs of the programs are all possible pure strategies
of the attacker P and P* is assumed to be the current
best response for the attacker. We compute the defender
strategy X that maximizes the defender’s utility Uy(X, P*)
(Equation 4) while adhering to the latency constraint (Equa-
tion 5) and ensuring that the assumed best response of the
attacker is consistent with the attacker’s rational attitude
(Equation 6). Note that the program may not always be
feasible if some choice of P* is strictly dominated by others,
but it will always return a solution for all non-dominated
P*. The number of programs needed to be solved to find an
optimal solution is given by the number of attacker’s strate-
gies, which is |T'|*, since there are |T| targets and k sources.
This approach has two main scalability limitations: first, the
non-linear formulations of Uy and U, prohibit us from using
fast linear-program solvers; second, the attacker’s strategy
space is extremely large (for a graph with 5 sources, 5 tar-
gets and one dummy target, we get over 7500 (65) programs
with similar number of non-linear equations), limiting the
usability of the non-linear solvers.

An alternative approach, inspired by algorithms comput-
ing SSE by solving a single mixed-integer program [17], would
introduce into each Equation 6 an integer variable z; (for
each attacker’s strategy P;) and restrict the variables by
>z =1, i.e., only one attacker’s strategy can be selected
as the best response. However, this program would be very
large, having (|7]¥)? non-linear equations (which is over 56
million for the problem with 5 sources and 5 targets). Hence,
we look at the zero-sum game formulation for the problem
which allows us to exploit the structure in ways that keep
the solution tractable.

4.2 Zero-sum Game Model

Finding an optimal solution using the full general-sum
game representation is computationally demanding on large
problems. We thus propose a zero-sum game formulation
which reduces the complexity of the model. Setting the
cost of each source to vs = 0, the utility function of the
attacker becomes a negation of the utility of the defender
(Ua(X, P) = —=U.(X, P)), and the game becomes zero-sum.
In zero-sum games, the SSE equals to Nash Equilibrium,
which can be computed using the minimax theorem. This
approximation causes an error quantified in Section 5. SSE
of our zero-sum game can be found by solving a single non-

linear mathematical program:

max v (8)
st. UgX,P) >V VP (9)
L(X) <B (10)

T e [0, 1] (11)

In this mathematical program, the main scalability limita-
tion persists — as for the general sum model — the non-linear
nature of the utility function (Equation 9) and the size of
the linear program, depending on the size of the attacker’s
strategy space (Equation 9). However, in spite of the neg-
ative findings, zero-sum games are generally easier to solve
optimally (e.g., iterative algorithms can be used as in [7,
8]) or to approximate [13]. We follow the latter approach
and investigate approximation algorithms that utilize the
property of submodularity and are able to find solutions for
zero-sum games with guaranteed bounded error.

4.3 Submodularity

In our problem formulation, there exists the effect of di-
minishing returns, i.e., as the number of defender’s resources
is increased, the marginal utility of deploying one extra re-
source keeps decreasing. This property is formalized by the
concept of submodularity [15] which is utilized in many do-
mains (e.g., sensor networks) to design effective algorithms
able to solve large problems. A real-valued function F' de-
fined on subsets A of a finite set V' is called submodular,
if for all A C B C V and for all s € V\B holds, that
F(AU{s}) — F(A) > F(BU{s}) — F(B). The constrained
optimization of a submodular set function is NP-hard in gen-
eral, however, a number of approximation algorithms with
provable quality guarantees can be used [21].

In our formulation, we have intermediate nodes that de-
tect the activity of the attacker. The value of the detected
activity in this problem setting is a probability between
[0, 1], as opposed to being binary which is generally assumed
in submodularity. Thus, most prior work on submodularity
is not directly applicable.

Vondrak et al. [21] studied smooth continuous extension of
submodular functions by taking expectations, defining sen-
sors making observations with probability in range [0, 1].
Additionally, the sensors have to make observations inde-
pendently. Both of these assumptions fit our problem. Von-
drak et al. proposed a continuous greedy process to solve
such a continuous extension approximately with a guaran-
teed (1 — 1/e)-optimal solution. The approach requires the
continuous function to be twice partially differentiable. In
addition, the approximation bound is established by exploit-
ing the up-concavity of the resulting continuous function [5].
Up-concavity means that the function is concave along any
non-negative direction vector; however, it is not necessar-
ily concave in all directions. Unfortunately, the continuous
greedy process is not applicable to our problem since our
objective function, Ug(X, P), is not up-concave which can
be determined by taking the double derivative of the de-
fender utility function. Unfortunately, this renders the cur-
rent work on submodularity inapplicable and requires the
development of novel ideas.

4.4 GRANDE Algorithm

We choose a different approach (in contrast to standard
submodular approaches) for purchasing an algorithm uti-

lizing the submodularity of the problem: we transform Ug
into a submodular function defined over sets by discretizing
the sampling rate of each node and we allow nodes to sample
only a fixed portions of traffic defined by a discretization step
d < 1; e.g. for d = 0.1, the sampling rate at each node can
be set only to 0,10, 20,...,100%. Then, each node n; can
be seen as a set of 1/d sensors S(n;) = {n%,n?,...,n}/d}.
A sensor nf can be switched either on (and sample a portion
of the traffic) or off which is expressed by a binary variable
z? € {0,1} having value of 1 for a sensor switched on. The
defender’s strategy is defined using the sensor notation as
X = {z]}. We redefine the Equation 1 defining the proba-
bility of a single malicious packet avoiding detection along
a path p as:

n(X.p)= [[(1—d- > 2] (12)

n;Ep S(n;)

Having a submodular utility function defined over sets
for the defender Uy (which has the same formulation as in
Equation 2), we are able to design an iterative greedy algo-
rithm to achieve at least (1 — 1/e)-optimal (approximately
63.2%) solution (compared to the zero-sum game SSE) [6]
similarly to work of Krause et al. [13]. However, it is also
necessary to consider the cost of each sensor, given by the
budget constraint L(X) < B. When inspecting the same ra-
tio of packets at two nodes n;, ny with flows f(n;) > f(ng),
the cost of inspection at the node n; (and thus switching
on a sensor at node n;) is higher than inspection cost at
node ng. The cost of switching on a sensor is defined as
e(n]) = d- f(ni). As shown in [12], the greedy algorithm
has to select a sensor with the highest benefit-cost ratio

i Ug(XU{z?},P)—Uy(X,P
) = argmax_; a(Xu{el}, ,) a(X,).
x5 c(nd)

Based on this formalization, we introduce GRANDE (G Re-

edy Algorithm for Network DEfense), depicted in Algorithm 1.

GRANDE iteratively selects sensors with the highest security
increment vs. cost ratio to add to the defender strategy, until
the whole sampling budget is spent. To find the best sen-
sor to add, we find attacker’s optimal strategy attacker BR
and test each candidate sensor against this strategy. The
complexity of the algorithm is thus given by the number of
nodes n = |I|, by the discretization step d, by the minimum
amount of traffic flow at each node f, by the sampling bud-
get B and by the complexity of the attacker’s best response
oracle O(BR). The algorithm asymptotic complexity is thus
O(nB/fd) - O(BR).

The attacker’s optimal strategy attacker BR is a best re-
sponse to the current defender’s strategy (following the orig-
inal Stackelberg formulation). The algorithm thus needs a
fast best response oracle providing best response to the cur-
rent strategy of the other player. The following section de-
fines such oracle and provides insight into the complexity of
this approach.

4.4.1 Attacker’s Best Response Oracle

Recall, that the attacker only selects for each source a tar-
get to attack and the routing path is automatically assigned.
The attacker’s best response is thus an optimal assignment
of a target to every source, given a fixed defender’s strategy
X, maximizing the attacker’s utility. The attacker’s best
response can be found using an iterative greedy approach.

Let’s assume we have defender’s strategy — a mixture of
sampling probabilities x; for each node n;. We can compute

Algorithm 1 GReedy Algorithm for Network DEfense.

budget < B
I + nodesOnPaths
repeat
updated < false
best Node <— null
bestIncrement < 0
attacker BR < getAttacker BR(graph)
for node € I do
increment = getSecurityIncrement(d, attacker BR)
if bestIncrement < increment then
if d- flow(node) < Budget then
bestIncrement < increment
bestNode < node
end if
end if
end for
if bestNode! = null then
bestNode.sampling < bestNode.sampling + d
budget < budget — d - flow(node)
updated < true
end if
until not updated

Algorithm 2 Attacker’s Best Response Oracle

H e {}
K <+ attacker Resources
Pairs < enumerateAll Pairs()
repeat
(s*,t*) < emptyPair
for (s,t) € Pairs do
if U((s,t)|H) > U((s*,t*)|H) then
(5%.6%) « (5,1)
end if
end for
H + HU(s*,t*)
until size(H) = K

for each source-target pair, what is the likelihood of being
detected pt = 1—m(X, P(s,t))- Let’s denote the source-target
pairs by STP = {(s1,t1),.-.,(Sn,tm)}. We also know that
two different source-target pairs (with different sources) can
share the same target t. Given input {STP, p.}, the best re-
sponse is k source-target pairs, {(s1,t1), (s2,t2),..., (Sk,tx)}
such that the attacker’s utility is maximized.

The greedy algorithm (summarized in Algorithm 2) works
as the following: we choose one source-target pair at a time
that maximizes the attacker’s immediate gain in utility. For-
mally, let’s assume some pairs H, have been chosen and we
need to choose the next one. Since pairs in H have already
been chosen, we know there is some probability of success-
fully attacking a target ¢, denoted by ¢*, which may or may
not be 0. If we choose source s, and target ¢, the additional
utility we will get will be:

U((s,t)|H) =0 —ps-(1=q)-7—q" 7
=(1=p)-(1=g")-7 (13)
Note if H is empty, all ¢ = 0 and U((s,t)|{}) = (1 —
pt) - 7', is the expected value of attacking ¢ from s, intu-

itively. The greedy algorithm then chooses (s*,t") such that
U((s*,t")|H) is maximized.

THEOREM 1. The attacker’s oracle always returns attacker’s

best response to any defender’s strategy.

ProOF. Consider at any point of the algorithm, a set of

source-target pairs H has been chosen. The greedy algo-
rithm returns (s*,¢*). We want to show (s*,¢*) must be
in the best solution conditioned on H being included. This
will allow us to do induction on the number of pairs chosen.
Let’s denote the optimal solution by C*. Then the first pair
chosen must be in C* because Hi is empty (no condition
required). And if the pairs up to k are all in the optimal
solution, implying Hy is in C*, therefore the k + 1-th pair
must be in the optimal solution.

This implies that we want to show (s*,t*) must be in the
best solution conditioned on H being included. To show
this by contradiction, we consider another candidate best
solution C' (having H) which does not have (s*,¢*). Two
cases to consider:

1. C contains no pair attacking target t* other than those
in H. Then we find an arbitrary pair (s',t') in C
but not in H (such set is denoted as C\H) and re-
place it by (s*,t*). We know the attacker gains ex-
actly U((s*,¢*)|H) (since no other pair in C\H at-
tacks ¢*) and loses at most U((s',t')|H) (since there
might be another pair in C\H). Recall U((s*,t")|H) >
U((s',t")|H) given how (s*,t*) is chosen, the new solu-
tion C' + (s*,t*) — (s, ') must be better than C' which
also includes H, leading to a contradiction.

2. C\H has at least another pair attacking ¢* that is not
(s*,t*). Let the pair be (s',t*). We replace it by
(s*,t*). We know pL. > pl, because U((s*,t*)|H) >
U((s',t*)|H). Therefore the total probability of suc-
cessfully attacking t* must increase after the replacing
given other pairs in C' remain fixed. Again this shows,
C + (s*,t") — (s/,t") is a better solution which is the
contradiction.

Having reached contradiction in both points, we have shown
that (s*,¢*) must be in the best solution conditioned on H
being included, implying validity of the induction step. [

The complexity of the algorithm is O(STn + S*T) =
O(n®), where the O(STn) is complexity of the initializa-
tion and O(S?T) is complexity of iteration part. S is the
number of sources, T is number of targets and n = |I| is the
number of nodes.

5. EVALUATION

In the evaluation, we focus on exploring the trade-off be-
tween scalability and the quality of the solution. We con-
sider the solution of the general-sum model to be optimal
and compare it with the solution of the mathematical pro-
gram representing the zero-sum game model, and the solu-
tion from GRANDE. Additionally, we want to explore finer
properties of GRANDE, specifically, the dependency of the
solution error on the discretization step of the sampling rate.

Experimental scenarios of the analyzed problem depend
on a large set of parameters that affect both the performance
of the algorithms, as well as the quality of produced solutions
for the approximative ones. The key parameter is the graph
on which the game is played; more specifically the number of
intermediate nodes ||, number of sources |S|, and number of
targets |T|. Moreover, the degree of overlapping paths also
plays an important role in the non-linear models. The de-
tection penalty s has no direct impact on performance, the

l:N !
z 0 °
3 & 08
o o
o
©-05 S 06
S 2
X k)
5 T 04
5]
s g .
g S 0.2l| ¢ sampling rate for n,
5] g o
© o -+-sampling rate for n,
@ 1
-1 0= S \"2\«-\(.
0 05 1 15 2 10 10 10 10
gamma gamma

(a) Defender’s exp. util- (b) Distribution of defender
ity. Red diamonds denote resources between n; and
locally optimal solution. na (log = axis).

Figure 2: Impact of detection penalty « on the solution
structure. While increasing value of ~, the defender redis-
tributes it’s resources between n1 and ne and his exp. utility
changes (b), however, it stays equal to zero for v > 1.2 (a).

defender’s budget |B|, traffic flow f; and discretization step
d proportionally influence mainly the GRANDE algorithm.
While we conducted experiments for different graph struc-
tures, we present results only on scale-free graphs since these
graphs are known to be the closest to general computer net-
works in their structure. We performed experiments with
random flows (e.g. the flow at each node is set indepen-
dently on the flow of the others) as well as with network-
flow constrained traffic distribution (the flow at each node is
computed from the network-flow equations by randomly se-
lecting traffic sources and sinks in the network) without any
direct impact on both the performance and quality of the
solution. Without loss of generality, in every experiment,
the traffic flow in the graph is set between [0, 1] at each
node. We have included the dummy target in each model to
keep the graph size constant for all algorithms, even though
the zero-sum model as well as the iterative algorithm never
consider the attacker to attack the dummy target. The de-
tection penalty v was equal for each source, set to vs = 1.

5.1 Solving Non-linear Constrained Programs

To obtain an optimal solution of the program representing
the general-sum game model, we use a non-linear solver to
find optimal or locally optimal solution. NEOS server [4]
provides on-line solvers for solving a number of programs
including non-linear programs. We used LINDOG]lobal [20],
a non-linear constrained program solver able to find globally
optimal solutions for many constrained non-linear programs.
The input for the solver is a file describing the program in
GAMS format, which is sent by a remote procedure call to
the NEOS server using XML remote procedure call API.
The solution is computed on the server and the results are
sent back to the user.

5.2 General-sum vs. Zero-sum Model

As a first step, we compare the quality of the general-sum
and the zero-sum game model. The difference in the solution
quality between these two models will be directly affected by
the value of the parameter 7, as can be observed from Equa-
tions 2 and 3. For the example described in section 3.4, the
trend of defender’s expected utility while varying v is de-
picted on Figure 2a. As « is increased, the defender’s ex-
pected utility rises. Two rapid transitions occur for (y = 0.8
and v = 1.2) which are caused by the switch of attacker’s
strategies to attack the dummy target ¢tp. In the interval
from [0, 0.8], the attacker attacks from both sources, in the

10 10 10
——1 target ——1 target
10° 10° -+-2 targets 10 -+-2targets
_F 3 targets — 3 targets
% 10 38 7 10| 2 4 targets o = gt o 4 targets
E‘10 -t ém g =~ ém O zs—nlp 4 targets |
g 103;‘/ g 10° 4 FEES Sl g
= = [S— - B Py bt % £
2 ——1 target || 2
10 -+-2 targets 10
10" 3 targets 10" 10
2 3 4 1 2 3 4 10 15 20 25

nr. of sources

(a) General-sum NLP

nr. of sources

(b) Zero-sum NLP

nr. of sources
(c) GRANDE

Figure 3: Scalability of the three models with respect to the number of sources and targets on a scale-free graph of size 100
(note the different scale of the x axis). For comparison of GRANDE with other two approaches, we have displayed one result
of the zero-sum NLP in the Figure (c) denoting performance of the zero-sum model for 4 targets.

interval from [0.8,1.2] the attacker attacks only from one
source, and from [1.2, oo], the attacker chooses not to attack
at all. Figure 2b shows the distribution of defender’s re-
sources between nodes nq1 and no as vy is varied. Notice that
the defender has to redistribute the resources even for large
values of v > 1.2 to discourage the attacker from attacking.
The results of the zero-sum model are equal to the results
of the general-sum model with v = 0.

5.3 Performance

Figure 3 depicts the scalability of the three main algo-
rithms. The NEOS server is limited by the size of uploaded
GAMS files, thus we weren’t able to compute solution for
general-sum NLP beyond 3 sources and 3 targets (as the
GAMS files describing the model are over 1MB large). For
the zero-sum NLP, the limit was reached at 5 sources and 4
targets. However, even on these problem sizes it is possible
to see performance trends: the runtime of the general-sum
as well as zero-sum NLP is exponential (even in logarith-
mic coordinates) in the number of sources (i.e. number of
attacker strategies) and time needed to solve a graph with
3 sources and 3 targets is over three minutes in average for
the general-sum NLP. Using the zero-sum NLP, we are able
to compute solutions on graphs with 5 sources and 4 targets
in approximately 30 seconds.

Comparing GRANDE to mathematical program formula-
tions, we can observe its superiority on Figure 3c (perfor-
mance of the zero-sum NLP on 4 targets is depicted as a
single line on the left of the chart). The performance of
GRANDE is linearly dependent on the discretization step d
(see Section 4.4). The algorithm is able to find solution
on graphs with 20 sources and 4 targets in seconds, having
the discretization step set to d = 0.01 (which is sufficient
to compute solutions with an average error under 10%, see
Section 5.4). The largest problem tried, with 2000 nodes,
200 sources and 20 targets was solved in approximately 50
hours on a standard PC.

5.4 GRANDE Solution Error

The theoretical error bounds of greedy algorithms opti-
mizing submodular set functions shown in [21] are valid only
for zero-sum settings. We explore the error of GRANDE com-
pared to the general-sum game solution, which can be pos-
sibly unbounded. It is necessary to set the discretization
step of GRANDE to a specific step, which has a direct im-

pact on the quality of solution. To evaluate the error, we
have varied both the discretization step as well as attacker
loss expressed by ~. The budget constraint of the defender
was fixed to B = 4.

For every graph, we have computed the defender’s re-
source allocation X* and attacker’s best response P* us-
ing the program of the general-sum NLP, which served as
a reference optimal solution (even if only a local optimum
was found by the solver, due to lack of other globally optimal
techniques). Then we computed the defender’s resource allo-
cation X ¢ using GRANDE. To evaluate the quality of X, we
have found the attacker’s best response P¢ to X using the
general-sum utility formulation. Then, we computed the er-
ror of X€ as err = UD(X*’P*)_UD(XG’PG), where T =37
(maximum achievable error).

Figure 4 quantifies errors of GRANDE from 50 different
scale-free graphs with two sources and two targets (limit
given by the necessity of computing optimal solution using
the general-sum NLP). The graph depicts median error (de-
noted by the circle) with 25th and 75th percentile (denoted
by a thick bar) and maximal and minimal error (denoted
by whiskers). As we refine the discretization step from 1 to
0.001 (i.e. the sensors can increase their sampling rate by
0.1% for d = 0.001), the quality of solution increases. An
average error under 10% is reached when the discretization
step is set to d = 0.01, however GRANDE is able to compute
strategies with discretization step set to 0.001 resulting into
errors under 5%. The variance is highest for d = 0.1 as the
solutions varied from close-to-optimal to 100% ineffective.

6. CONCLUSION

Effectively securing large computer networks without sti-
fling the quality of service is a practical and theoretical chal-
lenge of grave impact in the real-world. In this paper, we
have outlined the mathematical model of the network secu-
rity domain. We have provided the mathematical formula-
tion for the two person security game between the defender
and the attacker, where the attacker sends malicious pack-
ets from some (known) set of sources and the defender uses
packet inspections to detect such malicious traffic. While
we provide results for this optimal mathematical formula-
tion, the complex non-linear calculations render the model
intractable for large computer networks. Thus, we also in-
troduced a zero-sum simplification of the original model as
well as GRANDE, a novel error-bounded approximation algo-

100 @ y=01{
I -
gof ' 1V i —_—=
. 11 —v-
X | ! —_—y =20
g 40 1
]
20 i | Y ' |
0 ‘Ie»gi co @6
1 0'5Disc‘,reti9£’:11ion ste;g)'01 0.001

Figure 4: Error of GRANDE evaluated over different scale-
free graphs. The errors are grouped according d, and in each
group, v was set to {0.1,1,2,5,20}.

rithm that relies on the submodularity properties of network
security. We validate these algorithms experimentally, and
show that GRANDE, on average, produces results with orders
of magnitude higher solution quality as projected by theo-
retical worst case bounds. This work contributes by outlin-
ing the challenges present in the network security domain,
and by introducing state-of-the-art algorithms to assist de-
fender’s by suggesting optimal network security strategies.

7. ACKNOWLEDGMENTS

This research was supported by the United States De-
partment of Homeland Security through the National Cen-
ter for Risk and Economic Analysis of Terrorism Events
(CREATE) under award number 2010-ST-061-RE0001, by
the Czech Ministry of Education, Youth and Sports (grant
no. LH11051), by the Czech Science Foundation (grant
no. P202/12/2054) and by the AirForce Office of Scien-
tific Research, Air Force Material Command, USA (grant
no. FA8655-10-1-3016).

8. REFERENCES

[1] T. Alpcan. Network Security: A Decision and
Game-Theoretic Approach. Cambridge University
Press, 2010.

[2] L. Chen and J. Leneutre. A game theoretical
framework on intrusion detection in heterogeneous
networks. IEEFE Transactions on Information
Forensics and Security, 4(2):165-178, 2009.

[3] V. Conitzer and T. Sandholm. Computing the optimal
strategy to commit to. In Proceedings of the 7Tth ACM
conference on Electronic commerce, pages 82-90.
ACM, 2006.

[4] J. Czyzyk, M. Mesnier, and J. Moré. The neos server.
Computational Science & Engineering, IEEE,
5(3):68-75, 1998.

[5] S. Dughmi. Submodular Functions: Extensions,
Distributions, and Algorithms. A Survey. CoRR, 2009.

[6] Y. Freund and R. Schapire. Adaptive game playing
using multiplicative weights. Games and Economic
Behavior, 29(1-2):79-103, 1999.

[7] E. Halvorson, V. Conitzer, and R. Parr. Multi-step
Multi-sensor Hider-Seeker Games. Proceedings of the

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

21]

Twenty-First International Joint Conference on
Artificial Intelligence (IJCAI), 2003.

M. Jain, D. Korzhyk, O. Vanék, V. Conitzer,

M. Péchouéek, and M. Tambe. A double oracle
algorithm for zero-sum security games on graphs. In
Proceedings of the Tenth International Joint
Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), Taipei, Taiwan, 2011.

M. Jain, J. Tsai, J. Pita, C. Kiekintveld, S. Rathi,

M. Tambe, and F. Ordénez. Software Assistants for
Randomized Patrol Planning for the LAX Airport
Police and the Federal Air Marshals Service.
Interfaces, 40:267-290, 2010.

M. Kodialam and T. Lakshman. Detecting network
intrusions via sampling: a game theoretic approach. In
Twenty-Second Annual Joint Conference of the IEEE
Computer and Communications. (INFOCOM),
volume 3, pages 1880-1889. IEEE, 2003.

D. Korzhyk, V. Conitzer, and R. Parr. Security games
with multiple attacker resources. In Proceedings of the
International Joint Conference on Artificial
Intelligence (IJCAI), 2011.

A. Krause and C. Guestrin. Near-optimal observation
selection using submodular functions. In Proceedings
of the National Conference on Artificial Intelligence
(AAAT), 2007.

A. Krause, A. Roper, and D. Golovin. Randomized
sensing in adversarial environments. In Proceedings of
the Twenty-Second International Joint Conference on
Artificial Intelligence (IJCAI), pages 2133-2139, 2011.
M. Manshaei, Q. Zhu, T. Alpcan, T. Basar, and

J. Hubaux. Game theory meets network security and
privacy. EPFL, Lausanne, Tech. Rep, 2010.

G. Nemhauser and L. Wolsey. Maximizing submodular
set functions: formulations and analysis of algorithms.
Studies on Graphs and Discrete Programming, pages
279-301, 1981.

H. Otrok, M. Mehrandish, C. Assi, M. Debbabi, and
P. Bhattacharya. Game theoretic models for detecting
network intrusions. Computer Communications,
31(10):1934-1944, 2008.

P. Paruchuri, J. Pearce, J. Marecki, M. Tambe,

F. Ordonez, and S. Kraus. Playing games for security:
an efficient exact algorithm for solving Bayesian
Stackelberg games. In Proceedings of the 7th
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 895-902, 2008.
V. Paxson. Bro: A system for detecting network
intruders in real-time. Computer networks,
31(23-24):2435-2463, 1999.

J. Pita, C. Kiekintveld, M. Tambe, E. Steigerwald,
and S. Cullen. GUARDS - Game Theoretic Security
Allocation on a National Scale. In Proceedings of the
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 2011.

L. Schrage and I. LINDO Systems. Optimization
modeling with lingo. 1999.

J. Vondrak. Optimal approximation for the
submodular welfare problem in the value oracle model.
In Proceedings of the 40th annual ACM symposium on
Theory of computing, STOC 08, pages 6774, 2008.

