Competition of Distributed and Multiagent Planners (CoDMAP)

http://agents.cz/codmap

Michal Štolba and Antonín Komenda {stolba,komenda}@agents.fel.cvut.cz Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic

and Daniel L. Kovacs

dkovacs@mit.bme.hu

Department of Measurement and Information Systems, Faculty of Electrical Engineering and Informatics Budapest University of Technology and Economics, Hungary

ICAPS Workshop on the International Planning Competition (WIPC-15) June 8, 2015, Jerusalem, Israel

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

MA-STRII

MA-PDDI 00000 Competition 000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusions 0

Motivation

Aims

- consolidate the distributed and multi-agent planners in terms of input format and formalism.
- a proof-of-concept of a potential future IPC track on multi-agent planning.
- to bring closer the classical and multi-agent planning communities.

- various forms of multi-agent planning have recently found their way to the ICAPS community (main track, DMAP workshop)
- no IPC track on multi-agent planning so far
- wide variety of actual problems the term multi-agent planning covers (e.g., online planning modeled as Dec-POMDPs)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusions O

Focus (CoDMAP TL;DR)

- (Brafman and Domshlak 2008) domain-independent multiagent planning (slightly generalized)
- MA-STRIPS (STRIPS-like model) via MA-PDDL
 - fully observable
 - STRIPS actions (distinct sets for different agents)
 - init & common goals
- cooperative agents (common goals)
- offline planning
- multi-agent planning for the very multi-agent system
 - $\bullet \ \rightsquigarrow$ each agent planning for itself
 - $\bullet \ \rightsquigarrow$ distributed problem solving with distributed execution
 - \rightsquigarrow "IPC multi-core track without shared memory": TCP/IP
- evaluation: coverage, quality (total count, makespan), time

MA-STRIPS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

MA-PDDL 00000 Competition 000000 Conclusions O

Formalization

Minimal extension of MA-STRIPS toward multi-agent planning:

STRIPS $\langle P, A, I, G \rangle \rightsquigarrow \mathsf{MA-STRIPS} \langle P, \{A_i\}_{i=1}^n, I, G \rangle$

- n agents defined by their actions
- STRIPS actions: $a = \langle \mathsf{pre}(a), \mathsf{add}(a), \mathsf{del}(a) \rangle, a \in A_i$
- factorization: n action sets, ag. k can use only actions in A_k
- privacy: $p \in P$ is public, if $p \in facts(a_i) \cap facts(a_j)$ and $a_i \in A_i$, $a_j \in A_j$ and $i \neq j$, otherwise p is private to agent k s.t. $p \in facts(a_k)$ for some $a_k \in A_k$.

$$\mathsf{facts}(a) = \mathsf{pre}(a) \cup \mathsf{add}(a) \cup \mathsf{del}(a)$$

Motivation, Context and Focus	MA-STRIPS	MA-PDDL 00000	Competition 000000	Conclusions O					
Properties									

Actions

- non-durative
- deterministic

Privacy

• pragmatics of public/private separation defined weakly

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 → agents do not know, observe, use foreign private information

MA-PDDL

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Minimal extension of PDDL (3.1) to describe MA-STRIPS problems.

Factored Privacy

• :factored-privacy

Unfactored Privacy

• :unfactored-privacy and :multi-agent

MA-STRIPS 000 MA-PDDL

Competition 000000

Conclusions 0

Privacy Semantics

The privacy is semantically defined over grounded facts, based on a set of rules common to both variants:

- 1. A public predicate definition grounded with public objects/constants is a public fact.
- 2. A public predicate definition grounded with at least one object/constant private to agent α is a private fact of agent α (grounding a single predicate definition with objects private to different agents is not allowed).
- 3. A private predicate grounds to a private fact regardless of privacy of the objects used for grounding.

MA-STRIP

MA-PDDL

Competition 000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusions O

Factored Privacy

- :factored-privacy (privacy extension)
- · each agent has its separate domain and problem files
- each containing only the particular agent's factor
 - public predicates (functions, constants)
 - agent's private predicates (functions, constants)
 - agent's actions A_i
- private elements are enclosed in (:private ...)

MA-STRIPS 000

MA-PDDL

Competition 000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusions O

Unfactored Privacy

- :multi-agent (factorization extension)
- :unfactored-privacy (privacy extension)
- single domain and problem file for all agents
- agents are defined as object/constant
- each action is extended by a special parameter defining the agent:

:agent ?a

 private elements for a particular agent are enclosed in (:private <agent> ...)

Competition

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

MA-STRIPS

MA-PDDL

Competition 000000 Conclusions 0

Competition Tracks

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

Centralized "Transitional" Track

Aiming for maximal compatibility with IPC and existing planners.

- both factored or unfactored privacy input
- any communication (incl. shared memory)
- any factorization allowed, one output plan

Distributed "Experimental" Track

Aiming for a proper multi-agent setting.

- only factored privacy input
- only TCP/IP communication
- defined factorization & output (coordinated) plans

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

MA-STRIP

MA-PDDL 00000 Competition 0000●0

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusions O

Evaluation

- 12 benchmark domains (two unknown to the participants)
- each domain with 20 problems
- max 10 agents per problem
- 30 minutes, 8GB memory limit and 4 cores per machine

Evaluation

- 12 benchmark domains (two unknown to the participants)
- each domain with 20 problems
- max 10 agents per problem
- 30 minutes, 8GB memory limit and 4 cores per machine

Metrics

- coverage over all domains and problems (max 240)
- IPC score over the plan quality Q (sum over all problems Q^*/Q , where Q^* is the cost of optimal plan or of the best plan found by any of the planners)
- IPC score over the planning time T
- in the distributed track: total cost (sum of costs of all used actions) and makespan (the maximum timestep of the plan if executed in parallel)

MA-STRIP

MA-PDDL 00000 Competition 00000

Conclusions O

Results (cvg)

- Centralized: 8 teams, 12 planners, 17 configurations
- Distributed: 3 teams, 3 planners, 6 configurations

Centralized		PSM-VRD ▶ ⁶	171] [Distributed	Distributed	
ADP-legacy 🚟	222	MADLA 🛏 ¹	154		PSM-VRD	180	
ADP 🚟	218	PMR <mark>⊆</mark> 2	149		MAPlan 🎽	174	
SIW→BFS ∎+∎ ⁷	216	MAPR-p \blacksquare^2	140		MH-FMAP 💶 4	107	
CMAP-t 💶 2	210	PSM-VR ►6	113		PSM-VR ▶6	99	
DFS+ ∎•∎ ⁷	208	MH-FMAP 🚾	102		$MAPlan/LMc$ $harmondows^5$	75*	
Anyt-LAPKT ∎•∎ ⁷	207	MAPlan/LMc 🛏 5	79*		MAPlan/maLMc $>$	52*	
CMAP-q 🚾 ²	204	MAPlan/maLMc $>$	71*				
MAPlan \mathbf{h}^{5}	191	MARC 19	1		* optimal		

Interactive results will be available at the competition webpage:

http://agents.cz/codmap

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

CoDMAP as a Future IPC Track

- towards a new multi-agent track for the next IPC
- ideally the format of the CoDMAP Distributed Track
- new multi-agent specific domains & problems
- extensions: joint actions, private goals, pair-wise privacy, etc.
- enhancements and modifications according to the experience with the current competition and feedback we received

We would like to thank to all participants. Thank you!

http://agents.cz/codmap