
MAPR and CMAP

Daniel Borrajo and Susana Fernández
Universidad Carlos III de Madrid

Av. Universidad, 30
28911 Leganés, Spain

dborrajo@ia.uc3m.es;sfarregu@inf.uc3m.es

Abstract

We have developed a Multi-Agent Planning (MAP)
framework to solve classical planning tasks for multiple
cooperative agents with private information. It includes
two new fully configurable MAP algorithms. In par-
ticular, we present to the CoDMAP competition three
different configurations whose objectives are: minimize
planning time; maximize quality of plans; and maxi-
mize the privacy level among agents. The main moti-
vation for these systems is to be able to use any current
state-of-the-art planner as the baseline problem solver;
that is, our approach is planner-independent. Therefore,
we can automatically benefit from advances in state-of-
the-art planning techniques. They also avoid the exten-
sive communication effort of other approaches.

Introduction
We have developed a MAP framework that can be con-
figured in many different ways. First, we can choose be-
tween two MAP algorithms: MAPR and CMAP. Second,
they can use several methods for assigning public goals to
agents. Finally, we can select the underlying planner to be
used. In this paper, we describe briefly all these options
and at the end we report the actual submitted planners.
This work has been partially reported in (Borrajo 2013b;
2013a).

The paper is structured as follows. Section describes
MAPR and CMAP, and Section details the configuration that
participated in the competition.

Multi-Agent Planning in our Framework
We have devised two alternative MAP algorithms: MAPR
and CMAP. MAPR stands for Multi-Agent Planning by plan
Reuse, while CMAP stands for Centralized MAP.

MAP Algorithms
The main steps of the algorithms are (for further details, we
refer the reader to (Borrajo 2013b)):

1. Compilation of MA-PDDL into PDDL. It translates the in-
put MA-PDDL format of CoDMAP into a PDDL file. As a
side effect it extracts the agents’ types and private predi-
cates

2. Generation of m obfuscated PDDL domain and problem
files (one for each agent φi)

3. Assignment of public goals to agents, while each agent
might also have an additional set of private goals. As a
side effect, a subset of agents are selected to plan for.

4. Planning using a state-of-the-art planner.

• MAPR

– It calls the first agent to provide a solution (plan) that
takes into account its private and public goals.

– Then, it iteratively calls each agent with the solutions
provided by previous agents, augmented with domain
and problem components needed to reproduce the so-
lution (goals, literals from the state and actions). Each
agent receives its own goals plus the goals of the pre-
vious agents. Thus, each agent solves its own prob-
lem, but taking into account the previous agents’ aug-
mented solutions.

– Since previous solutions might consider private infor-
mation, all private information from an agent is obfus-
cated for the next ones.

• CMAP

– It merges all the domains of the selected agents in
step 3 into a single domain file and all the problem
files into a single problem file. In both files, private
information of each agent has been obfuscated.

– It calls any single agent standard planner to solve the
new problem

Goal Assignment
For each goal in g ∈ G and agent in φi ∈ Φ, MAPR
computes a relaxed plan from the initial state of the agent,
Ii, following the relaxed plan heuristic of FF (Hoffman &
Nebel 2001). If the relaxed plan heuristic detects a dead-
end, then the cost of φi achieving g is c(g, φ) = ∞. Other-
wise, c(g, φ) = c(RP ) where c(RP ) is the number of ac-
tions in the relaxed plan. All these costs define a cost matrix,
c(G,Φ). We have devised eight goals assignment strategies:
all-achievable, rest-achievable, best-cost,
load-balance, contract-net, all, subset and
subgoals. Next, we only describe the ones used in the
configurations participating in the competition.



• rest-achievable: MAPR first assigns to the first
agent φ1 all goals that it can reach (cost less than ∞).
Then, it removes those goals from the goals set, and as-
signs to the second agent all goals that it can reach from
the remaining set of goals. It continues until the goals set
is empty.

• subset: for each public goal gi ∈ G, it computes the re-
laxed plan. However, instead of just computing the cost,
it computes the subset of agents that appear in the relaxed
plan for that goal, Φi ⊆ Φ. Those are agents that could
potentially be needed to achieve the goal gi. It is com-
puted as the subset of agents that appear as arguments of
any action in the relaxed plan. Then, it assigns gi to all
agents in Φi.

• subgoals: it is defined for MAPR only. The other as-
signment strategies assume that for each goal, there ex-
ists at least one agent that can achieve the goal by it-
self. This is not true in domains as logistics when agents
are considered to be trucks and airplanes. In that case if
an object has to move from the post-office of one city
to the post-office of another city, none of the assign-
ment strategies would allow MAPR to solve the goal in-
dividually for a given agent. Thus, we have devised a
method that is inspired in (Maliah, Shani, & Stern 2014;
Crosby, Rovatsos, & Petrick 2013). During goal assign-
ment, a goal policy is computed. The goal policy is an
ordered list of agent and subgoals that it needs to achieve
at a given time step. At planning time, MAPR considers
one policy step at a time, forcing the corresponding agent
to achieve the goals specified at that policy step.

Obfuscation
In MAPR, if the first agent solves the problem, then it can-
not pass the private information directly to the rest of agents.
So, it obfuscates the private parts and outputs an augmented
obfuscated planning problem. We have implemented differ-
ent obfuscation levels. First, a simple obfuscation consists
of a random substitution σ for the names of all private pred-
icates, actions and objects. This is done when the individ-
ual domain and problem files are generated at the beginning.
Second, a further obfuscation removes arguments from lit-
erals and also removes static predicates. Third, MAPR can
learn and share macro-operators, so that privacy-preserving
is further augmented by not sharing the individual private
actions (either between two public actions, or all). We have
defined two alternative methods: only-one-macro that gener-
ates one macro-operator for the complete plan of each agent;
and several-macros that generates several macro-operators.

Plans Parallelization
We have implemented an algorithm to transform a sequen-
tial plan into a parallel plan. First, a suboptimal algorithm
generates a partially-ordered plan from a totally-ordered one
by using a similar algorithm by Veloso et al. (Veloso, Pérez,
& Carbonell 1990). Then, a parallel plan is extracted from
the partially-ordered plan. The parallelization algorithm is
planner independent. It receives two inputs: a planning task,
Π, and a sequential plan, π, that solves the task. It outputs

Table 1: Summary of properties for MAPR and CMAP.

Planner sound complete optimal privacy
MAPR

√
X X strong1

CMAP
√ √

2
√

3 weak

a parallel plan that is one of the potential parallelizations of
the sequential plan. This helps improving makespan, since
in MAP that is a useful criteria for optimizing.

Properties
Table 1 shows a summary of the properties of MAPR and
CMAP. The notes mean further constraints are needed:
• 1: strong privacy is achieved if only-one-macro is used.

Otherwise, the privacy level is medium if more than one
macro is used.

• 2: if we use all goal assignment (which we did not use
in the version of the CoDMAP)

• 3: if we use all goal assignment (which we did not use
in the version of the CoDMAP) and an optimal planner
(which we did not use in the version of the CoDMAP)

Participating Configurations in CoDMAP
As the base planner of both MAPR and CMAP, we have used
Fast-Downward code (Helmert 2006) to build a simplified
version of LAMA-2011. It only performs the first greedy
best-first search with the FF and LM-COUNT heuristics and
preferred operators. Regarding cost models, we have used
unit cost (all actions have a cost of one); we have named it
LAMA-UNIT-COST.

We have submitted three configurations of our system:
• planner1: CMAP algorithm with the subset goal-

assignment strategy and LAMA-UNIT-COST as the base
planner. It aims at optimizing planning time and cover-
age.

• planner2: CMAP algorithm with the subset goal-
assignment strategy and LAMA-2011 as the base planner.
It aims at optimizing plans’ quality and coverage.

• planner3: MAPR algorithm with the subgoals goal-
assignment strategy, the min-goals sort-agent scheme,
LAMA-UNIT-COST as the base planner and learning only-
one-macro. It aims at maximizing privacy among agents.

Acknowledgments
This work has been partially supported by the Spanish gov-
ernment through MICINN project TIN2011-27652-C03-02.

References
Borrajo, D. 2013a. Multi-agent planning by plan reuse. Ex-
tended abstract. In Proceedings of the AAMAS’13, 1141–
1142.
Borrajo, D. 2013b. Plan sharing for multi-agent plan-
ning. In Preprints of the ICAPS’13 DMAP Workshop on
Distributed and Multi-Agent Planning, 57–65.



Crosby, M.; Rovatsos, M.; and Petrick, R. P. A. 2013. Au-
tomated agent decomposition for classical planning. In
Borrajo, D.; Kambhampati, S.; Oddi, A.; and Fratini, S.,
eds., Proceedings of ICAPS’13. AAAI.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffman, J., and Nebel, B. 2001. The ff planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Maliah, S.; Shani, G.; and Stern, R. 2014. Privacy pre-
serving landmark detection. In Proceedings of ECAI’14,
597–602.
Veloso, M. M.; Pérez, M. A.; and Carbonell, J. G. 1990.
Nonlinear planning with parallel resource allocation. In
Proceedings of the DARPA Workshop on Innovative Ap-
proaches to Planning, Scheduling, and Control, 207–212.
San Diego, CA: Morgan Kaufmann.


