““““““““

@ s Israel Science Foundation
K3 L‘A 3

Proceedings of the

Competition of
Distributed and Multi-Agent
Planners (CoDMAP-15)

| N

http://agents.fel.cvut.cz/codmap/

(

7

| .

/ Michal Stolba, Antonin Komenda and Daniel L. Kovacs

Jerusalem, Israel 7/6/2015



ICAPS Proceedings of the Competition of Distributed and Multi-Agent Planners (CODMAP-15)

Organizers

Michal Stolba
Czech Technical University in Prague, Czech Republic

Antonin Komenda
Czech Technical University in Prague, Czech Republic

Daniel L. Kovacs
Budapest University of Technology and Economics, Hungary

Foreword

The 3rd Workshop on Distributed and Multi-Agent Planning (DMAP) at the ICAPS 2015
conference was accompanied by a multi-agent planning competition, CODMAP (Competition of
Distributed and Multi-Agent Planners). The competition was meant to be a preliminary version
of a possible future DMAP track at the International Planning Competition (IPC) and focused on
comparing domain-independent, offline planners for multiple cooperative agents. The DMAP
problems the planners have to solve during the competition were discrete-time, deterministic and
fully observable, except for the introduction of privacy, as described in MA-STRIPS, a multi-
agent extension of the STRIPS model. To cope with multiple agents and privacy, the base
language of deterministic IPC, PDDL3.1, and its multi-agent extension, MA-PDDL, were
extended with privacy in order to serve as a base language of CODMAP. For maximal openness,
CoDMAP consisted of two tracks: a centralized highly compatible “transitional” track for
various multi-agent planners and an "experimental™ proper track for distributed multi-agent
planners. Altogether 9 planners were submitted to the competition and 3 of them were apt to
compete in both tracks, the rest competed only in the centralized track.

We thank the authors of the planners for their effort and willingness to prepare and submit their
planners to the competition. We also thank the chairs of the ICAPS conference for their
continuous support throughout organization of the competition.

— Michal Stolba, Antonin Komenda, Daniel L. Kovacs
CoDMAP Organizers
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MAPR and CMAP

Daniel Borrajo and Susana Fernandez
Universidad Carlos III de Madrid
Av. Universidad, 30
28911 Leganés, Spain
dborrajo@ia.uc3m.es;sfarregu @inf.uc3m.es

Abstract

We have developed a Multi-Agent Planning (MAP)
framework to solve classical planning tasks for multiple
cooperative agents with private information. It includes
two new fully configurable MAP algorithms. In par-
ticular, we present to the CODMAP competition three
different configurations whose objectives are: minimize
planning time; maximize quality of plans; and maxi-
mize the privacy level among agents. The main moti-
vation for these systems is to be able to use any current
state-of-the-art planner as the baseline problem solver;
that is, our approach is planner-independent. Therefore,
we can automatically benefit from advances in state-of-
the-art planning techniques. They also avoid the exten-
sive communication effort of other approaches.

Introduction

We have developed a MAP framework that can be con-
figured in many different ways. First, we can choose be-
tween two MAP algorithms: MAPR and CMAP. Second,
they can use several methods for assigning public goals to
agents. Finally, we can select the underlying planner to be
used. In this paper, we describe briefly all these options
and at the end we report the actual submitted planners.
This work has been partially reported in (Borrajo 2013b;
2013a).

The paper is structured as follows. Section describes
MAPR and CMAP, and Section details the configuration that
participated in the competition.

Multi-Agent Planning in our Framework

We have devised two alternative MAP algorithms: MAPR
and CMAP. MAPR stands for Multi-Agent Planning by plan
Reuse, while CMAP stands for Centralized MAP.

MAP Algorithms

The main steps of the algorithms are (for further details, we
refer the reader to (Borrajo 2013b)):

1. Compilation of MA-PDDL into PDDL. It translates the in-
put MA-PDDL format of CODMAP into a PDDL file. As a
side effect it extracts the agents’ types and private predi-
cates

2. Generation of m obfuscated PDDL domain and problem
files (one for each agent ¢;)

3. Assignment of public goals to agents, while each agent
might also have an additional set of private goals. As a
side effect, a subset of agents are selected to plan for.

4. Planning using a state-of-the-art planner.

e MAPR

— It calls the first agent to provide a solution (plan) that
takes into account its private and public goals.

— Then, it iteratively calls each agent with the solutions
provided by previous agents, augmented with domain
and problem components needed to reproduce the so-
lution (goals, literals from the state and actions). Each
agent receives its own goals plus the goals of the pre-
vious agents. Thus, each agent solves its own prob-
lem, but taking into account the previous agents’ aug-
mented solutions.

— Since previous solutions might consider private infor-
mation, all private information from an agent is obfus-
cated for the next ones.

e CMAP

— It merges all the domains of the selected agents in
step 3 into a single domain file and all the problem
files into a single problem file. In both files, private
information of each agent has been obfuscated.

— It calls any single agent standard planner to solve the
new problem

Goal Assignment

For each goal in ¢ € G and agent in ¢, € @, MAPR
computes a relaxed plan from the initial state of the agent,
1;, following the relaxed plan heuristic of FF (Hoffman &
Nebel 2001). If the relaxed plan heuristic detects a dead-
end, then the cost of ¢; achieving g is ¢(g, ¢) = oo. Other-
wise, ¢(g,¢) = c(RP) where ¢(RP) is the number of ac-
tions in the relaxed plan. All these costs define a cost matrix,
¢(G, @). We have devised eight goals assignment strategies:
all-achievable,rest-achievable,best-cost,
load-balance, contract-net, all, subset and
subgoals. Next, we only describe the ones used in the
configurations participating in the competition.
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e rest-achievable: MAPR first assigns to the first
agent ¢ all goals that it can reach (cost less than o).
Then, it removes those goals from the goals set, and as-
signs to the second agent all goals that it can reach from
the remaining set of goals. It continues until the goals set
is empty.

e subset: for each public goal g; € G, it computes the re-
laxed plan. However, instead of just computing the cost,
it computes the subset of agents that appear in the relaxed
plan for that goal, ®; C ®. Those are agents that could
potentially be needed to achieve the goal g;. It is com-
puted as the subset of agents that appear as arguments of
any action in the relaxed plan. Then, it assigns g; to all
agents in ;.

e subgoals: it is defined for MAPR only. The other as-
signment strategies assume that for each goal, there ex-
ists at least one agent that can achieve the goal by it-
self. This is not true in domains as logistics when agents
are considered to be trucks and airplanes. In that case if
an object has to move from the post-office of one city
to the post-office of another city, none of the assign-
ment strategies would allow MAPR to solve the goal in-
dividually for a given agent. Thus, we have devised a
method that is inspired in (Maliah, Shani, & Stern 2014;
Crosby, Rovatsos, & Petrick 2013). During goal assign-
ment, a goal policy is computed. The goal policy is an
ordered list of agent and subgoals that it needs to achieve
at a given time step. At planning time, MAPR considers
one policy step at a time, forcing the corresponding agent
to achieve the goals specified at that policy step.

Obfuscation

In MAPR, if the first agent solves the problem, then it can-
not pass the private information directly to the rest of agents.
So, it obfuscates the private parts and outputs an augmented
obfuscated planning problem. We have implemented differ-
ent obfuscation levels. First, a simple obfuscation consists
of a random substitution ¢ for the names of all private pred-
icates, actions and objects. This is done when the individ-
ual domain and problem files are generated at the beginning.
Second, a further obfuscation removes arguments from lit-
erals and also removes static predicates. Third, MAPR can
learn and share macro-operators, so that privacy-preserving
is further augmented by not sharing the individual private
actions (either between two public actions, or all). We have
defined two alternative methods: only-one-macro that gener-
ates one macro-operator for the complete plan of each agent;
and several-macros that generates several macro-operators.

Plans Parallelization

We have implemented an algorithm to transform a sequen-
tial plan into a parallel plan. First, a suboptimal algorithm
generates a partially-ordered plan from a totally-ordered one
by using a similar algorithm by Veloso et al. (Veloso, Pérez,
& Carbonell 1990). Then, a parallel plan is extracted from
the partially-ordered plan. The parallelization algorithm is
planner independent. It receives two inputs: a planning task,
II, and a sequential plan, 7, that solves the task. It outputs

Table 1: Summary of properties for MAPR and CMAP.

Planner sound complete optimal privacy
MAPR X X strong’
CMAP 2 3 weak

a parallel plan that is one of the potential parallelizations of
the sequential plan. This helps improving makespan, since
in MAP that is a useful criteria for optimizing.

Properties

Table 1 shows a summary of the properties of MAPR and
CMAP. The notes mean further constraints are needed:

e 1: strong privacy is achieved if only-one-macro is used.
Otherwise, the privacy level is medium if more than one
macro is used.

e 2:if we use all goal assignment (which we did not use
in the version of the CoDMAP)

e 3:if we use all goal assignment (which we did not use
in the version of the CoODMAP) and an optimal planner
(which we did not use in the version of the CoODMAP)

Participating Configurations in CoDMAP

As the base planner of both MAPR and CMAP, we have used
Fast-Downward code (Helmert 2006) to build a simplified
version of LAMA-2011. It only performs the first greedy
best-first search with the FF and LM-COUNT heuristics and
preferred operators. Regarding cost models, we have used
unit cost (all actions have a cost of one); we have named it
LAMA-UNIT-COST.
We have submitted three configurations of our system:

e plannerl: CMAP algorithm with the subset goal-
assignment strategy and LAMA-UNIT-COST as the base
planner. It aims at optimizing planning time and cover-
age.

e planner2: CMAP algorithm with the subset goal-
assignment strategy and LAMA-2011 as the base planner.
It aims at optimizing plans’ quality and coverage.

e planner3: MAPR algorithm with the subgoals goal-
assignment strategy, the min-goals sort-agent scheme,
LAMA-UNIT-COST as the base planner and learning only-
one-macro. It aims at maximizing privacy among agents.
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ADP an Agent Decomposition Planner CoDMAP 2015

Matthew Crosby
School of Informatics
University of Edinburgh
Edinburgh EH8 9AB, Scotland, UK
m.crosby@ed.ac.uk

Abstract

ADP (an Agent Decomposition-based Planner) is de-
signed to deduce agent decompositions from standard
PDDL-encoded planning problems and then to exploit
such found decompositions to generate a heuristic used
for efficient planning. The decomposition process parti-
tions the problem into an environment and a number of
agents which act on and influence the environment, but
can not (directly) effect each other. The heuristic calcu-
lation is an adaptation of the FF relaxation heuristic to
incorporate multiagent information. Relaxed planning
graphs are only ever generated for single-agent sub-
problems. However, when cooperation is necessary, an
agent’s starting state may include facts added by others.

Introduction

ADP is a complete, satisficing (non-optimal) centralised
planning algorithm that attempts to compute and utilise
agent decompositions for the sole purpose of improving
planning time. As such, it does not take into account com-
mon multiagent concerns such as privacy, trust or strategic
considerations. It has been shown (Crosby, Rovatsos, and
Petrick 2013; Crosby 2014) that useful decompositions can
be found and successfully utilised in around forty percent of
IPC domains (IPC 2011), a collection of domains which are
not explicitly designed to be multiagent, yet contain some
obviously multiagent settings.

The first section of this paper provides a brief high-level
overview of the ADP algorithm, while the following section
provides more detail including explicit discussion of the de-
composition process and heuristic calculation. The third sec-
tion presents a summary of the agent decomposition results
for the domains used in CoODMAP 2015 after which some
limitations and future plans for ADP are discussed. Techni-
cal details of the planner and other information relevant to
CoDMAP 2015 can be found in the final section.

ADP Overview

ADP is split into two components, a decomposition phase
and a heuristic calculation. The decomposition phase pro-
cesses the planning problem and attempts to find a useful

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Agent_4

Figure 1: A depiction of an agent decomposition of the vari-
ables in a domain. Agents can only change the state of them-
selves and/or the environment.

multiagent decomposition. As depicted in Figure 1, a de-
composed domain is made up of a number of agents, each
with an internal state, and an environment that the agents
are acting upon. Actions that can influence or depend upon
the internal state of an agent are assigned to only that agent.
Actions that only involve the environment are assigned to
all agents. The decomposition algorithm is guaranteed to re-
turn a decomposition in which no actions that influence (or
rely upon) multiple agents’ internal states exist. This means
that agents can only influence themselves or the environ-
ment (thought the actions available to an agent in a given
state may depend on how others have influenced the envi-
ronment).

When a decomposition is found, ADP calculates a heuris-
tic value (used to guide a greedy best first search) that at-
tempts to exploit the multiagent structure to find plans faster
than the alternative single-agent approach. If no suitable de-
composition can be found, then ADP defaults to the the
single-agent FF heuristic (Hoffmann and Nebel 2001).

The main idea behind the multiagent heuristic calculation
is to only ever generate planning graphs for a single agent
subproblem at a time. In ‘coordination points’ each agent
computes its heuristic value for each goal proposition by
generating its relaxed planning graph from the current state.
Cooperation is achieved (where necessary) by combining all
individually reachable states and using this as input for suc-
cessive rounds of individual relaxed planning graph genera-
tion. As a result of this process, a coordination point is as-
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Algorithm 1: High-level Overview of ADP

Algorithm 3: h_adp Calculation

Input : MPT (V,I,G, A)
Output: Plan or |

1 Calculate Agent Decomposition ®

2 5«1

3 CoordPoint(5S) [initialises S.agent, S.goals and
S.macro]

4 Greedy BFS from S using h_adp heuristic [When the
successor of S is generated it copies S.agent, S.goals
and S.macro from its predecessor]

Input : State S with S.agent, S.goals and S.macro
Output: h_adp
1 S.micro
hﬁ(V‘S.agenta S‘S.agenta G'S.goal87 A‘S.agent)
2 if S.micro == 0 or deadend then
3 CoordPoint(.5)
4 S.micro <
hﬁ(v‘s.agem‘,v S‘S.age'm‘,v G|S.goals; A‘S.age'm‘,)
5 h_adp = S.macro + S.micro

Algorithm 2: Decomposition Algorithm
Input : MPT (V,1,G, A), Causal Graph CG, ® = {}
Output: Agent Decomposition ® = {¢1,...,d,}
1 &« {{v}: v € VA vroot node of CG\2-way cycles}
2 repeat
3 foreach ¢, € ® do

4 \ @i + ¢; U{v €V : v only successor of U ¢;}
5 ® < ® where agents sharing joint actions are
combined

6 until ® can no longer be refined

signed an agent (the one with the most individually achiev-
able goals), a set of agent goals (all propositions the assigned
agent can achieve alone along with all propositions neces-
sary for other agents to achieve goals requiring cooperation)
and a macro heuristic value that estimates the coarse dis-
tance to the goal. At non-coordination points, the heuris-
tic value is only updated by the currently assigned agent’s
progress towards its currently assigned goals.

ADP Details

Algorithm 1 gives a high-level pseudo-code overview of
ADP. The algorithm takes a multi-valued planning task
(MPT) calculated by the Fast-Downward Planning System
(Helmert 2006) as input and consists of an initial prepro-
cessing decomposition phase, followed by greedy best-first
search using the ADP heursitic.

An MPT is represented by I = (V, I, G, A), where:

e V is a finite set of state variables v, each with an associ-
ated finite domain D,,,
e ] is a state over V called the initial state,

e (5 is a partial variable assignment over V' called the goal,
and

e A is a finite set of (MPT) actions over V.

In what follow we assume the standard definition of precon-
ditions pre(a) and effects eff{a).

Decomposition

The decomposition algorithm creates a partitioning of the
variable set V' into variable subsets ¢; for each agent 4,
which leaves a public variable set P that contains the vari-
ables that pertain to the environment. An overview of the
decomposition algorithm is shown in Algorithm 2.

First, a list of potential agents is found from the causal
graph by taking every root node that exists in the graph once
all two-way cycles have been removed. These root nodes
must still have at least one successor node to be considered.

In the next step, the potential decomposition is refined by
first extending agent sets to be as large as possible and then
reducing the number of sets based on the existence of any
joint actions. Agent sets are extended by recursively adding
any node of the causal graph that is a successor of only vari-
ables already included in that agent set.

Actions in the domain can be categorised based on poten-
tial decompositions (partitions). An action is said to be inter-
nal to agent i for a given decomposition ® = {¢1,...,d,}
iff: Jv € pre(a) : v € ¢;, andv € pre(a) — v € ¢; U P.
In other words, the preconditions of @ must depend on an
internal state variable of ¢ and can only change ¢’s internal
state variables or the domain’s public variables.

A public action is any action where: v € pre(a) — v €
P, i.e., where the preconditions do not depend on the inter-
nal state of any of the agents. An agent’s action set is the set
of all internal actions of that agent, denoted by Act;.

An action is joint between agents ¢ and j given decom-
position ® = {phiy,...,d,} iff. v € pre(a) : v €
¢;, andJv € pre(a) : v € ¢;. An action can be joint be-
tween multiple agents. In the second stage of the algorithm
all agents involved in any joint actions are merged.

In a decomposition returned by ADP, the sets ¢; are guar-
anteed to have the agent property. In particular, a variable set
¢; (as part of a full decomposition @) has the agent property
when for all @ € A and variables v € V:

v E P ANv € eff(a) = a € Act;.

In other words, any agent variable can only be modified by
an action of that agent. The proof of this can be found in
(Crosby 2014).

Heuristic Calculation

The h_adp heuristic calculation is formed of two parts as
shown in Algorithm 3. There is a global coordination point
calculation that is performed infrequently and is used to pick
out a single agent and a set of goals for that agent to attempt
to achieve. There is also a micro single-agent heuristic cal-
culation that is identical to that used by FF (Hoffmann and
Nebel 2001) on the planning problem restricted to the cur-
rent chosen agent and its current set of goals and subgoals.
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Algorithm 4: Coordination Point Calculation

Input : State S
Output: S.agent, S.goals and S.macro

1 Iterated Relaxed Planning Graph Generation

2 if Max layer > 0 then

3 | Calculate Subgoals

4 Assign Goals
S.agent < agent with most goals with min h_add
S.goals < all goals achievable by S.agent
S.macro < N x |G\ S.goals]|

Coordination Point Calculation An overview of the co-
ordination point calculation is shown in Algorithm 4. It as-
sociates a chosen agent, a goal set and a macro heuristic
value with the current state. This extra state information
is carried over whenever a successor state is generated and
(re)calculated whenever the current agent’s goal set is com-
pleted or becomes impossible.

Iterated Relaxed Planning Graph Generation. Given a
state, each agent generates their full relaxed planning graph
for their restricted problem from that state. That is, each
agent uses an iterative process to create a graph containing
all possible actions it can perform (ignoring delete effects)
and all possible propositions that can be reached by perform-
ing those actions.

It may happen that some propositions can only be reached
if agents cooperate. For example, one agent may need to un-
lock a door before another can pass through. Because the
agents create their own planning graphs (using only their
own subproblems) they will not include any parts of the
search space only reachable by cooperation. If not all goals
are reachable by at least one agent after the first round of re-
laxed planning graph generation, the collected final state of
all the agents is formed and used as input for a subsequent
layer of relaxed planning graphs. Each successive iteration
introduces a new layer with the first being layer 0. Repeat-
ing this process until no more states are added by any agent
is guaranteed to cover every reachable state in the full (not
decomposed) problem.

Calculate Subgoals: Any time a goal proposition appears
for the first time in a layer above O this means that it cannot
be reached by an agent on its own. In this case, subgoals are
calculated. Plan extraction is used to find out which proposi-
tions are necessary from a previous layer in order to achieve
each goal. These propositions are called subgoals. All sub-
goals from layer O are added as to the agent that achieved
them first. Using the door example, if the second agent needs
to pass through the door to achieve a goal, the subgoal of un-
locking the door will be assigned to the first agent.

Assign Goals: The next part of the coordination point cal-
culation chooses which agent is going to be performing the
local search. First, each goal is assigned to the agent that
can achieve it with the lowest estimated cost from the re-
laxed planning graphs. That is, it is assigned to the agent
that added it with the lowest h_add value (Hoffmann and
Nebel 2001). An agents goal set is then formed of all goals

and subgoals assigned to it. The agent with the largest goal
set is chosen as S.agent along with all of its goals (and any
subgoals that it may have been assigned).

As a final part of the coordination point calculation the
value S.macro is calculated. This is used to provide a global
heuristic estimate of the distance through the overall search
space. This is calculated as N x |G \ S.goals| where N is
some large number chosen such that it dominates the single-
agent FF heuristic value of a state.

Decomposition of CODMAP Domains

This section discusses the decompositions that ADP finds
for the competitions domains used in CODMAP 2015. The
results are shown in Table 1. The second column of the ta-
ble *Usable’ reports whether or not ADP managed to find a
usable decomposition for the domain. ADP found a suitable
decomposition for nine of the twelve domains in the com-
petition, failing to find one in blocksworld, driverlog and
sokoban. This does not mean that no sensible decomposition
exists for this domain, but that ADP could not find one that
respects the agent property and contains no joint actions.

In general, decompositions returned by ADP are consis-
tent across all problem instances for each particular domain.
The one exception is Woodworking for which there was at
least one problem instances in which ADP could not find a
decomposition (represented by an asterisk in the table).

The third column of the table ’Joint’ shows whether or not
ADP found a decomposition that includes joint actions. The
only domain for which this differs is Driverlog for which a
decomposition was found (drivers+trucks) but was not used.
There is no theoretical reason why the APD heuristic can-
not be applied when joint actions exist, however in such
domains, the algorithm tends to perform very poorly and
much worse than if no decomposition is returned. Note that
for some domains a decomposition including joint actions
was found part-way through the decomposition algorithm,
but the final decomposition did not include any after agents
were merged.

The final three columns of the table compare the prede-
fined decompositions for the problems to the decomposition
that ADP finds. ADP found the same decomposition in ex-
actly half of the ten remaining domains. In Driverlog and
Taxis, ADP found a very similar decomposition including
the trucks as well as the drivers in Driverlog and only includ-
ing the taxis and not the passengers in Taxis. In Depot, ADP
finds a completely different decomposition which treats the
trucks as agents and also contains a separate agent that in-
cludes every single crate in the domain. The two remaining
domains Woodworking and Wireless return fairly odd look-
ing decompositions and it is expected that ADP will perform
poorly on these domains.

ADP also found some extended agent sets not reported in
the table. For example, in satellites the decomposition found
by ADP includes the variables representing the state of the
instruments’ of each satellite with each individual satellite.
In the Zenotravel domain the agent sets include the fuel lev-
els for each plane.
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Domain Usable | Joint Predefined Decomp ADP Decomp Match
blocksworld X X agents na -
depot v v/ | drivers + dists + depots trucks + crates* X
driverlog X v drivers drivers + trucks X
elevators v v lifts(fast/slow) lifts(fast/slow) v
logistics v v trucks + airplanes trucks + airplanes v
rovers v v rovers rovers v
satellites v v satellites satellites v
sokoban X X players na -
taxi v v taxis + passengers taxis X
wireless v v nodes + bases messages by node + messages by base X
woodworking | v/(¥) v different tools boards(available) + saw X
zenotravel v v planes planes v

Table 1: The decompositions found by ADP on the CODMAP problem domains.

Limitations and Future Work

This section briefly states some of the current limitations of
ADP and current plans for improvement and extension of the
planner in the future. The decomposition algorithm is known
to return a decomposition with the agent property but it is
currently unknown if it will always find such a decomposi-
tion if one exists. Further theoretical work and experimen-
tation with different possible decomposition definitions is
planned along with the release of a a standalone decomposer
that can be used to find decompositions of PDDL-encoded
planning problems.

The ADP heuristic calculation is based on the FF heuris-
tic. However, there are a large number of other successful
planning heuristics that have since been developed and it is
likely that the overall multiagent approach can be applied to
some of these techniques. It will also be interesting to ex-
tend ADP to include reasoning about action costs, numeric
fluents and other extensions of PDDL or to include more
multiagent aspects of the planning problems.

Finally, ADP is currently implemented as a single-
threaded process. As each agent is always acting only work-
ing on their own internal problem, there is clearly scope for
a multi-threaded version in which agents explore the search
space independently.

ADP Details Summary

This final section presents a summary of the details of ADP
relevant to CoDMAP 2015. ADP is a complete, satisfic-
ing (non-optimal) centralised single-threaded planning al-
gorithm. ADP was implemented as a heuristic plug-in for
the Fast-Downward planning system (Helmert 2006). The
preprocessing of the planning problem into an MPT and
the search algorithm are left unchanged. ADP simply calcu-
lates a decomposition and provides a heuristic value for each
state that is queried during search and also stores a macro-
heuristic value, agent, and goalset for each state. ADP is
called with the option cost_type=2 and using the lazy_greedy
search algorithm. Source code for ADP can be found online
at the authors homepage.

ADP ignores the agent factorization presented in the MA-

PDDL files, instead determining the agents present (if any)
itself. The private/public separation is therefore also ig-
nored. ADP does have an internal representation for private
and public facts and actions used for decomposition calcu-
lation but does not use this directly for search.

Sometimes ADP will not be able to find an agent decom-
position (defaulting to single-agent planning behaviour) or
find a different decomposition as to that specified in the
CoDMAP files. The details of these cases are explained in
an earlier section of this paper.

Two versions of ADP were submitted to the CodMAP
planning competition. Planner! is the ADP implementation
described in this paper. Planner2 is a legacy version of the
code that is functionally identical except that instead of stor-
ing the macro-heuristic value and agent assignment, it (in-
correctly) assumes that this can be carried over from the pre-
viously searched state. This legacy version was entered out
of curiosity and the fact that it has produced some interest-
ing results with some recent work in the planning commu-
nity showing the possible value of including some element
of randomness (essentially what the legacy version does) in
the search process.
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Abstract

In this paper, we present a brand new multi-agent plan-
ner called MAPIan. The planner implements state space
heuristic search on factorized problems retrieved from
either unfactored or factored version of MA-PDDL
files. It can run both in a multi-thread and distributed
configuration with a communication over network or
within a process. This paper briefly describes the de-
tails of the MAPlan configurations used in the 2015
CoDMAP competition.

Introduction

MAPIlan is a multi-agent planner implementing multi-
threaded as well as distributed state space heuristic search.
The MAPIan planner further expands on the ideas intro-
duced in the MAD-A* planner (Nissim and Brafman 2012).
The basic search scheme is following. All operators re-
trieved from the SAS™ representation of the problem are
divided between individual agents so that each operator be-
longs to only one agent. Each agent expands the state space
only by its own operators, but whenever a public opera-
tor is used, the resulting state (public state) is sent to all
other agents. As the public operators are considered those
that have some common facts in their preconditions or ef-
fects with operators owned by other agents. So the planner
can explore the state space with its own operators without
communication with any other agent if the results of the ap-
plied operators cannot influence others, but the states useful
to other agents are shared among all agents.

Moreover, an agent can have access to the projected oper-
ators if it is needed for a computation of heuristics. The pro-
jected operator is an image of the public operator owned by
the other agent that preserves only those preconditions and
effects that are already known to the agent. In other words,
each agent is aware only of those facts that are in the pre-
conditions and effects of its own operators and the projected
operators are images of other agents’ public operators with
deleted facts that the agent cannot understand.

The planner is implemented in C and is able to run a
multi-threaded as well as distributed search. The communi-
cation between agents can be inner process in case of multi-
threaded search or over TCP/IP protocol. Both factored and
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unfactored versions of MA-PDDL files can be used as in-
put problem definitions. In the following three sections, the
heuristics used in the configurations submitted to the 2015
CoDMAP competition are described and more details about
the planner specific to the centralized and the distributed
track are provided.

Heuristics

MAPIan planner uses altogether four different heuristics in
configurations submitted to 2015 CoDMAP competition.
The first one is the LM-cut heuristic (Bonet and Helmert
2010). The heuristic runs on projected operators that are ex-
tracted either from unfactored or factored version of MA-
PDDL domain definitions.

The second one is the distributed version of LM-cut
heuristic (Stolba, FiSer, and Komenda 2015a) which was de-
signed to provide provably equal estimates as the central-
ized version of LM-cut heuristic on all operators not only
the projected ones. This property comes with a cost of in-
creased computational burden causing less expanded states
per time unit. Nevertheless, the heuristic provides more ac-
curate estimates than LM-cut on projected operators which
should compensate the disadvantage of a slower state ex-
pansion. Both versions of LM-cut heuristics are admissible
so they are used in the optimal planning track.

The next one is the distributed Fast-Forward (FF) heuris-
tic (Stolba and Komenda 2014), specifically the lazy variant.
The computation of a heuristic estimate starts with an ex-
ploration of the relaxed problem on projected operators. The
following step is an extraction of the relaxed plan which is
performed in a distributed manner. Once a projected opera-
tor is reached during the extraction, the owner of the operator
is asked to provide its local part of the relaxed plan leading
to that operator. If the local part of the plan contains a pro-
jected operator, the path to that operator must be extracted
too. This would lead to a distributed recursion. The imple-
mentation used in MAPlan avoids a distributed recursion by
collecting the local parts of the relaxed plan by the initial
agent and requesting the other agents consecutively until all
projected operators are not solved.

The last heuristic function used in CoODMAP competition
is the distributed version of FF heuristic based on Domain
Transition Graphs (DTGs) (Stolba, FiSer, and Komenda
2015b). This heuristic is based on an exploration of agents’
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local DTGs constructed from projected operators. The un-
known (or more precisely possibly unknown) preconditions
and effects of projected operators are recorded into DTGs
with a special symbol. Once that symbol is reached during
extraction of the relaxed plan, a distributed recursion is ex-
ecuted and the cost of the relaxed plan is computed with
the help of the owners of the projected operators. Moreover,
partial plans for each fact can be cached and later reused
without re-computation of the full estimate. It makes this
heuristic very fast even though it is built upon a distributed
recursion.

Centralized Track

MAPIan configuration for the centralized track uses the un-
factored version of MA-PDDL definition files. A factoriza-
tion of a problem to particular agents is made as suggested
in the MA-PDDL files. The definition files are translated to
SAST representation by a slightly modified translator from
fast-downward planner (Helmert 2006). The factorization it-
self is made by MAPIan from SAS™ representation before
any agent is started and it is based on splitting the operators
according to an emergence of particular agents’ names in
parameters of operators. Privateness of facts and operators
is inferred also from SAS™ representation. The facts that are
stated only in preconditions or effects of operators of only a
single agent are considered as private and the operators that
have only private preconditions and effects are considered as
private. Similarly, projected operators are created simply by
omitting the private facts from preconditions and effects.

Since the translation from MA-PDDL is performed in a
centralized manner before any agent is started, all agents
share the same representation of a state. This considerably
simplifies a communication of public states between agents
because each agent can directly use the received state with-
out any additional processing. The disadvantage of this ap-
proach, of course, resides in insufficient preservation of pri-
vate information because private parts of public states are
freely communicated between agents. This could be eas-
ily solved if the private parts would be somehow scrambled
when transmitted and the receiving agent would be able to
unscramble its own private parts. Nevertheless, even though
this (or any similar) mechanism is not implemented in the
planner, each agent “understands” only its own private facts
and does not use any private information of other agents in
any way. So the privateness is at least preserved in this way.
In fact, we consider this problem only as an implementation
detail, but of course this property should be considered in a
comparison with other planners.

In centralized track, each agent runs in a separate thread
and communication channels between agents are created
within a common process context. Two configurations for
optimal planning are submitted, both using A* search algo-
rithm — one with the projected LM-cut heuristic and one with
the distributed LM-cut heuristic. One configuration for sat-
isficing planning with best-first search algorithm is submit-
ted where both inadmissible heuristics, distributed FF and
distributed DTG-based FF, are used, each for a half of the
maximum allowed time. All planners are complete.

Distributed Track

For the distributed track, the factored version of MA-PDDL
files is used. In contrast to the centralized track, the transla-
tion to SAS™ has to be done separately by each agent from
its own MA-PDDL factor. As in the previous case, the trans-
lation is done by the translate tool from fast-downward plan-
ner but this time it had to be modified more than slightly. The
translation to SAS™ has to be distributed over all agents be-
cause particular factors are available only to the correspond-
ing agents and it is not possible for a single agent to perform
concise grounding of the problem only from its own factor.

The translation consists of two main phases. In the first
phase, the concise grounding of the problem is made by a co-
ordinate effort of all agents that communicate in a ring, i.e.,
an absolute ordering of agents must be provided and each
agent sends messages only to the agent that is next in the or-
dering (and the last agent sends messages to the first one in
ring). This way, the messages circle around the established
ring of agents. The grounding starts with the first agent in
the ring, which uses a Datalog program (Helmert 2009) im-
plemented in fast-downward’s translate tool for grounding
of its local problem. All public facts that are returned by the
Datalog program are sent to the next agent. The next agent
adds the received public facts to the initial state and contin-
ues with the same procedure. It runs the Datalog program
and the public facts from its output sends to the next agent.
This whole procedure continues until the first agent in the
ring does not receive the same public facts that it already
transmitted. In this moment all agents know all grounded
facts that are public.

In the second phase, SAST variables and their values must
be inferred from the public and also private facts. This is
done from fact invariants (Helmert 2009). This might be a
little bit tricky in this case because each agent can identify
different invariants that can even overlap each other. So the
invariants viable for all agents are identified via a distributed
coordination of agents. The ring of agents that is already
established is used and the first agent sends its invariants of
the public facts to the next agent. The next agent uses its
own invariants to split the received invariants to preserve an
invariant property and so on. At the end of this procedure all
agents have the same invariants of public facts.

The resulting SAS™ variables are created so that all agents
share the exactly same representation of the public part of a
state and the private parts differ. In other words, the private
facts translate to a separate variables. Although some pri-
vate facts could share a variable with some public facts be-
cause they can be an invariant together, this design consid-
erably simplifies communication of states between agents.
This way, all agents share the exactly same representation
of the public part of a state but each agent still can privately
manage the private variables without communicating it di-
rectly to other agents.

The obvious disadvantage of this approach is that each
agent must somehow reconstruct the full state with its own
private part from the received public state. In MAPIan, this
problem is solved by attaching an identification of the full
state to the public part that is sent to other agents. The re-
ceiving agent must preserve this identification and send it
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along the next state that is created via expansions from the
original received state. Thus sets of state identifications from
all agents travel as tokens with all public states that are com-
municated and the receiving agent can always reconstruct
the full state, i.e., find out its private part for the state. The
same approach is used for distributed heuristics whenever a
state has to be sent to other agent.

The advantage is that the privacy of states is preserved be-
cause private information is never transmitted; not even dur-
ing translation of the problem to SAS™. The only transmit-
ted information linked to the private part of a state is its iden-
tification number. Nevertheless, that number has no meaning
to any other agent than the one that created it.

The agents in the distributed track run in separate pro-
cesses and communicate over network via TCP/IP. The con-
figurations are the same as in the case of the centralized
track.

Conclusion

In this paper, a brand new multi-agent planner, called MA-
Plan, was introduced. The planner is based on ideas intro-
duced by the MAD-A* planner and it is implemented in C.
The planner accepts both factored and unfactored versions
of MA-PDDL and it can utilize two different privacy pre-
serving schemes with their different advantages and disad-
vantages. The planner is complete and it can be used both
as an optimal planner and a satisficing planner. It can run in
one process as a multi-threaded application or it can be dis-
tributed over a network of computers. Although the planner
implements a moderate set of heuristics that can be used lo-
cally with projected operators, it also contains a rich set of
distributed heuristics.
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Abstract

In this paper we describe the planner and the config-
uration that was submitted to the centralized track of
the Competition of Distributed and Multiagent Plan-
ners (CoODMAP) 2015. We have submitted the plannner
called Plan Merger by Reuse, PMR. Given a multi-agent
planning problem, PMR lets the agents build their indi-
vidual plans separately. Then, it concatenates all the
plans to build a parallel plan. As plans are not always
valid, specially in the case of tightly-coupled domains,
PMR executes a replanner with the invalid plan as input.
The replanner performs planning by reuse and is able to
generate a sound plan from the input invalid plan.

PMR

Plan Merging by Reuse is a centralized, single threaded,
multi agent planner that combines two different techniques
to solve a multi agent planning (MAP) task: plan merg-
ing (Foulser, Li, and Yang 1992) and plan reuse (Fox et al.
2006). It receives as input a MAP task, which consists of a
domain and a problem to solve.

The PMR algorithm uses three off-the-shelf planners: one for
each agent to plan individually (it can be the same planner or
a different planner). Another one capable of applying plan
reuse, and the third one, only used by PMR in case all agents
failed in the planning process (centralized planning).

Given that in CODMAP the received input is in MA-PDDL,
before the algorithm starts to plan, both domain and prob-
lem are translated to PDDL. Then, the private information
included in them is obfuscated.

The first step of the PMR algorithm is (as shown in Figure 1)
to assign goals to agents. When PMR assigns goals to agents,
it also decides which agents are going to plan. There is no
need for the n agents to be involved in the planning process
if they do not have goals assigned. After that, the subset of
agents (m) with assigned goals start to build each plan in-
dividually. PMR concatenates all these plans and checks if
the concatenated plan is empty. An empty plan is obtained
when no agent has been capable of achieving its assigned
goals, in which case a centralized planner will be called to
solve the MAP task. If the concatenated plan is not empty,

Copyright (© 2015, Association for the Advancement of Artificial
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PMR checks if it is sound. Then, if the plan is sound, PMR
parallelizes it. If not, the invalid concatenated plan will be
the input plan for the plan reuse phase, where a replanner
will try to find a solution based on the actions of the input
plan. Next sections explain in more detail some parts of
PMR.

Ma-PDDL Domain
Ma-PDDL Problem

)
| Ma-PDDL to PDDL |

Obfuscation
Domain; » Domain,,
Problem; Problem,,

| Goal Assignment |

/\

Domain; Domain,,,
/ Problem; / / Problem,,, /
1 1
|Planning1 | |P1anningm |

Merging

Merged Domain
Merged Problem
Merged Plan

)
plan empty? Ye
No

plan sound?

Centralized planning

Plan reuse

Parallelization

Output plan

Figure 1: Flow diagram of PMR.
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Goal Assignment

In a MAP task, the way the public goals are assigned to the
different agents affects directly the efficiency and the perfor-
mance of the planner. PMR uses the goal assignment (GA)
strategies taken from MAPR (Borrajo 2013). First, for each
agent and public goal, a relaxed plan is computed (Hoffmann
and Nebel 2001). Thus, the algorithm knows if the goal can
be reached from the initial state of the agent and with what
estimated cost. Then, as this process is repeated, cost values
from the relaxed plans are stored into a matrix. After the
matrix is completely filled, a GA strategy is applied in order
to assign the public goals to the agents.

Planning

In the second step of PMR, each agent receives as an input
the obfuscated description of its domain and problem (pub-
lic and private parts joined). As public goals were already
assigned, they are included in the problem files. Then, each
agent invokes a planner to solve its planning task. Any state-
of-the-art planner can be used for this task. In the end, each
agent will have a partial solution to the overall MAP task.
Then, PMR concatenates all subplans. The concatenation
process has three outputs: the merged obfuscated plan, the
merged obfuscated domain and the merged obfuscated prob-
lem. These two last outputs have been obtained by merg-
ing each partial domain and problem that each agent has re-
ceived as input. At this point, the initial obfuscation for each
domain and problem is still preserved in the merged files.

Plan Reuse

If the merged plan was not sound, we can obtain the benefit
of transforming the merged plan into a valid plan; the plan-
ner to be used in this step must allow PMR to start the search
for a sound plan from an input plan. In case it can solve the
planning task and the planner is sound, it will generate a new
valid plan.

Parallelization

When a valid plan is obtained, PMR parallelizes it to obtain a
parallel plan. The parallelization of a plan consists on trans-
forming a totally ordered plan into a partial order plan. Thus,
more than one agent can execute an action in the same step.

Properties

PMR performs suboptimal incomplete planning, since we are
using suboptimal planners, working separately on subsets
of goals and choosing a subset of agents to plan for public
goals.

A key issue in MAP is agents privacy. Our obfuscation
process consists on replacing the names of private predi-
cates, actions and objects by other random names. At the
beginning of PMR, each agent builds its plan without shar-
ing private information, so privacy is preserved. Thus, an
obfuscated plan is returned as a result. After that, private
information is still preserved because when all plans are
merged, also the obfuscated problems and domains gener-
ated for each agent are merged into a unique pair of obfus-
cated domain and problem. These files are used first by the
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validator to validate the obfuscated merged plan and then
by the plan reuse planner in case the obfuscated plan needs
to be fixed. When PMR finally obtains a valid plan, it des-
obfuscates the information and returns a readable PDDL ver-
sion of the plan.

Implementation and Configuration setup

PMR has been entirely developed using Bash and Common
LISP. More details on the PMR algorithm can be found in
(Luis and Borrajo 2014). The submitted configuration calls
MAPR in the distributed phase (Borrajo 2013) and RRPT in
the plan by reuse phase. RRPT is an stochastic plan reuse
planner that we have developed based on two previous works
(Alcazar, Veloso, and Borrajo 2011), (Borrajo and Veloso
2012). If the distributed phase fails and the returned plan is
empty, PMR calls LAMA-FIRST (Richter and Westphal 2010)
to find a solution using a centralized approach. LAMA-FIRST
corresponds to the first solution that LAMA (Richter and
Westphal 2010) returns, using greedy best first with costs.

In addition, there are a few parameters set to certain val-
ues, which were chosen because of the results obtained in
the benchmark of the competition in number of solved prob-
lems (coverage), length of the plans (quality) and planning
time:

e We decided to assign the public goals of a problem to the
agents following the Best-Cost GA strategy. Thus the al-
gorithm assigns each public goal to the agent that can po-
tentially achieve it with the least cost.

e Each agent inside MAPR uses LAMA-FIRST to solve its
MAP task.

e PMR also needs VAL (Howey, Long, and Fox 2004) to
validate the plan that MAPR returns, in order to choose
which part of the algorithm executes after that.
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Introduction

In this paper we describe three related entries submitted to
the CoODMAP planning contest (Stolba, Komenda, and Ko-
vacs 2015). All three entries are configurations of the classi-
cal planning framework LAPKT (Ramirez, Lipovetzky, and
Muise 2015), and all three use the same pre-compiled input.
Our approach is based on the following insight:

The task of planning for multiple agents with heteroge-
neous access to fluent observability can be solved by
classical planners using the appropriate encoding.

The general approach is quite simple: we convert the un-
factored domain and problem file into a classical planning
problem such that the privacy of fluents and objects are re-
spected. The translation is both sound and complete, and
we solve the encoded problem using a centralized classical
planner. None of the factorization is passed to the classical
planner, because the encoded problem contains all the nec-
essary information as part of the problem itself.

In the remainder of the document, we outline (1) the sim-
ple encoding that we use to create a classical planning prob-
lem, (2) the planning framework that we use to solve the
encoded problems, and (3) the configurations that we sub-
mitted to the CODMAP contest.

Encoding

The model of privacy used for the CODMAP contest restricts
the number of objects and fluents that an agent has access to.
Any action that uses a fluent or object (in a precondition or
effect) that is not either (1) private to agent i or (2) public
to all agents, cannot be executed by agent i. That is, every
fluent and object mentioned in an action in order for agent
i to execute must be known by that agent. Crucially, the
privacy of objects and fluents are static, and thus we can
use classical planning techniques as long as any action that
violates the privacy restrictions is not allowed to occur.

We have two options for filtering out any action that vio-
lates the multi-agent privacy: (1) modify the planner to use
only those actions that adhere to the privacy; and (2) modify
the domain description so that any valid grounding respects
the privacy. We chose the latter option for our approach.

Every object o and agent ag in the domain has a corre-
sponding fluent (K-obj ag 0) added. If an action that is ex-
ecuted by agent ag uses object o, then a precondition of the
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action is for (K-obj ag o) to hold. Similarly, we add fluents
(K-fluent-foo ag) for every agent ag and fluent foo in the
domain, and update the action preconditions accordingly.

The final step is to translate the privacy model provided in
the multi-agent description of the domain (unfactored rep-
resentation), into the initial state that fully defines which
agents have access to which fluents and objects. Everything
added to the model is encoded as action preconditions and
initial state fluents, and any modern classical planner will
strip away these auxiliary fluents because they are all static.

Any classical planner can use the resulting encoding, and
the solutions that the planner produces will correspond pre-
cisely to those plans for the original domain that do not vi-
olate the privacy model for the agents. While simple con-
ceptually, this transformation makes it possible to apply any
existing classical planner to the multi-agent setting used for
the centralized track of the CoODMAP competition.

LAPKT Planner Description:
Heuristic and Search Description

The algorithm [terated Width, or IW, consists of a sequence
of calls IW(i) fori = 0, 1, ..., |F| until the problem is solved.
Each iteration /W(i) is a breadth-first search that imme-
diately prunes any states that do not pass a novelty test;
namely, for a state s in IW(i) not to be pruned there must
be a tuple 7 of at most i atoms such that s is the first state
generated in the search that makes ¢ true. The time com-
plexities of IW(i) and IW are O(n') and O(n") respectively
where n is |F| and w is the problem width. The width of ex-
isting domains is low for atomic goals, and indeed, 89% of
the benchmarks can be solved by IW(2) when the goal is set
to any one of the atoms in the goal (Lipovetzky and Geftner
2012). The width of the benchmark domains with conjunc-
tive goals, however, is not low in general, yet such problems
can be serialized.

Serialized Iterative Width, or SIW, uses IW for serializing
a problem into subproblems and for solving the subprob-
lems. SIW uses IW greedily to achieve one atomic goal
at a time until all atomic goals are achieved jointly. In be-
tween, atomic goals may be undone, but after each invoca-
tion of IW, each of the previously achieved goals must hold.
SIW will never call IW more than |G| times where |G| is the
number of atomic goals. SIW compares surprisingly well
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to a baseline heuristic search planner using greedy best-first
search and the h,,4, heuristic (Bonet and Geffner 2001), but
does not approach the level of performance of the most re-
cent planners. Nonetheless, SIW competes well in domains
with no dead-ends and simple serializations.

While the blind-search SIW procedure competes well
with a greedy best-first planner using the additive heuris-
tic, neither planner is state-of-the-art. To narrow the perfor-
mance gap, we use two simple extensions. The first involves
computing a relaxed plan once before moving on to the next
subgoal. This makes the pruning in the breadth-first proce-
dure less aggressive, while keeping IW exponential in the
width parameter. This new procedure called IW*(i), com-
putes a relaxed plan once from the initial state s so that
states s’ generated by IW*(i) keep a count on the number
of atoms m in the relaxed plan from s achieved on the way
to s’. For the state s’ in the breadth-first search underly-
ing IW*(i) not to be pruned, there must be a tuple ¢ with
at most i atoms, such that s" is the first state among the
states in the search that achieved m fluents from the initial
relaxed plan that makes the tuple ¢ true. The serialized al-
gorithm SIW that uses IW* is called SIW*. The second ex-
tension involves changing the greedy search for achieving
the goals one at a time, by a depth-first search that is able
to backtrack. The planner that incorporates both extensions
is called DFS* (Lipovetzky and Geffner 2014). Notice that
while DFS* computes a relaxed plan once for each IW* call,
DFS* does not use the relaxed plan for computing heuris-
tic estimates. Thus, DFS* remains a blind search planner,
which does not use any standard techniques such as heuris-
tics, multiple-search queues, helpful actions or landmarks.

In contrast with DFS*, we developed an additional stan-
dard forward-search best-first planner guided by an eval-
uation function that combines the notions of novelty and
helpful actions (Lipovetzky and Geffner 2012; Hoffmann
and Nebel 2001). In this planner, called BFS(f) (Lipovetzky
and Geftner 2012), ties are broken lexicographically by two
other measures: (1) the number of subgoals not yet achieved
up to a node in the search, and (2) the additive heuristic, A,q4.
The additive heuristic is delayed for non-helpful actions.

Implementation

All the planners have been implemented using the automated
planning toolkit LAPKT' (Ramirez, Lipovetzky, and Muise
2015). The toolkit is an extensible C++ framework that de-
couples search and heuristic algorithms from PppL parsing
and grounding modules, by relying on planner “agnostic”
data structures to represent (ground) fluents and actions. We
consider LAPKT to be a valuable contribution in itself since
it enables the community to develop planners, while rely-
ing on a collection of readily available implementations of
search algorithms and planning heuristics. These resulting
planners are independent from specific parsing modules and
grounding algorithms. For planners that acquire descriptions
of planning tasks from PppL specifications, the toolkit pro-
vides the means to plug in either FF (Hoffmann and Nebel
2001) or Fast-Downwarp (Helmert 2006) parsers. Alterna-

'Source code available from http://www.lapkt.org
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tively, and more interestingly, the planner can be embedded
into complex applications, directly, if the “host” application
is written in C++, or indirectly when the host is written in
an interpreted language, such as PyTHoN, by wrapping the
planner with suitably generated marshalling code.

Entry Variations
Three variations of the LAPKT planning framework were
submitted to test their distinctive behaviour on the encoded
domains. Here, we briefly describe each in turn:

1. Anytime-LAPKT: The first configuration is sought by
SIW™*. Failing this, BFS(f) is called. After a first solu-
tion is computed, RWA* is invoked with the appropriate
bound, and solution quality is improved iteratively. The
motivation behind this configuration is to try and find high
quality plans within the time limit. This variation is both
sound and complete. In the limit, it is also optimal.

2. SIW*-then-BFS(f): The second configuration attempts
first to solve the problem using SIW*. Failing this,
BFS(f) is invoked and will run until a solution is found.
The motivation behind this configuration is to try and find
a solution as fast as possible, while retaining complete-
ness. This variation is both sound and complete.

3. DFS™: The third and final configuration tries to find a so-
lution extremely quickly using only DFS*. The motiva-
tion behind the third configuration is to see how many
problems can be solved using this simple approach. This
final variation is sound, but incomplete.

Summary

We have described three variations of a planner submitted
to the CODMAP contest. All three take as input a converted
version of the multi-agent problem such that the privacy of
objects and fluents are respected by any plan. Each varia-
tion has a different motivation that explores aspects such as
striving for plan quality versus speed to completion.

The specific characteristics that our planners have, as de-
fined by the CODMAP organizers, are as follows:

1. Planner complete? Configurations 1 and 2 are complete.
2. Planner optimal? Configuration 1 is optimal in the limit.

3. Is the agent factorization in the MA-PDDL files used?
Yes, the translation uses the agent factorization to deter-
mine which agents can execute the appropriate actions.

4. Is the private/public separation presented in the MA-
PDDL files used? Yes, the translation uses this informa-
tion to determine the initial configuration of K-obj and
K-fluent fluents.

5. Is the planner using MA-STRIPS private/public separa-
tion? Yes, as part of the translation.

6. What private information (or its derivative), in what form,
and how is it communicated in the planner? Nothing,
other than the newly encoded problem (i.e., the planner
is unaware it is solving a multi-agent planning problem).

7. What is the architecture of the planner (centralized or dis-
tributed; single or multi-threaded)? Centralized and sin-
gle thread for all three configurations.
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Abstract

In this report, we describe the first multi-agent
planner for required cooperation (MARC) as sub-
mitted into CoDMAP competition 2015. MARC
is a centralized multi-agent planner, which is com-
plete but non-optimal. MARC is designed to use
the theory of required cooperation to solve a sub-
set of large multi-agent problems by compiling
them into “smaller” problems (smaller in terms
of the number of agents) by using the notion of
transformer agents. We aim to improve upon the
planning time by solving these simpler problems
and then expanding them to a plan for the origi-
nal problems. Through the use of this approach we
have also observed that the competition domains
only represents a subset of possible multi-agent
planning problems.

Introduction

Multi-agent planning is a research area that has been
receiving considerable interest from the planning com-
munity in recent years. Most of the current approaches
concentrate on using the interaction between agents to
efficiently produce plans. An equally important ques-
tion we need to ask ourselves is, when is the use of
multiple agents required to solve the problem? Even
when multiple agents are not required they may still be
used in a planning problem for efficiency reasons. Our
earlier work (Zhang et al 2014) asked this fundamental
question, and we had identified methods to establish
if a problem truly requires cooperation among agents.
That work also introduced an approach of solving a
multi-agent problem by solving an equivalent problem
containing a smaller number of agents. This equiva-
lent problem consists of special virtual agents called
transformer Agents (TA) - As the name suggests, these
agents are capable of transforming into any agent from
the original domain (thus be able to use all of their
capabilities).

In this report, we introduce the first multi-agent plan-
ner for required cooperation (MARC), which is an at-
tempt to implement some of the ideas from this earlier
work. Our current implementation compiles a multi-
agent planner problem into a transformer agent prob-
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lem, provided the problem can be solved by a single
transformer agent; otherwise, the problem is solved by
an existing planner. Our tests on the current domains
provided by the CoODMAP organizers showed that nine
out of ten domains satisfy the the requirements of this
compilation. By adopting this approach we have been
able to create a complete (but non-optimal) planner
that has given us good performance on a number of
domains used in the competition. As we explain in the
later sections of the report this in fact means, that the
competition domains only explores a subset of the pos-
sible required cooperation problems.

Required Cooperation

One important concept that (Zhang et al 2014) intro-
duced was that of required cooperation (RC). A Multi-
agent problem (MAP) is said to have required cooper-
ation if the problem is not single agent solvable. The
work further goes to define two classes of cooperation
namely type 1 for Heterogeneous agents and type 2
for homogeneous agents. In type 1 RC, the heterogene-
ity could arise from domain, variables or capabilities
(DVC) of the agents. All problems with RC which have
no domain, variables or capabilities heterogeneity gets
classified under the type 2 RC. We also showed that
for a given problem of type 1 in which the RC can
only be caused by DVC, it can be solved by a single
transformer agent, provided the state space of all the
agents are connected. (Zhang et al 2014) suggests the
use of connectivity graphs in order to test for the state
space connectivity, where the connectivity graph is an
undirected graph in which each agent is represented by
a graph node and any two nodes are connected if the
agents have connected state spaces. The work also as-
sumes that all the goals are independent of the agents.

Our planner MARC solves a multi-agent problem
by first compiling it into a transformer agent problem.
Once we have the plan for the transformer agent prob-
lem, we expand this plan to produce a plan for the
original problem.

MARC

As mentioned above MARC draws from the theory of
required cooperation as presented in (Zhang et al 2014)
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(define (problem DLOG-2-2-3) (:domain

driverlog)
(:objects
truckl - truck
truck2 - truck
s2 - location
sl - location
sO - location
p0-2 - location
pO-1 - location
p2-1 - location
packagel - package
(:private driverl
driverl - driver
)
(:private driver2
driver2 - driver

)

(define (problem DLOG-2-2-3) (:domain

driverlog)

(:objects
packagel - package
truckl - truck
truck2 - truck
s2 - location
sl - location
s0 - location
p0-2 - location
pO-1 - location
p2-1 - location
TA - driver

(:init
(path p0-2 s2)
(link s0 s2)
(link s1 s0)
(at truckl s0)
(path p2-1 s2)

(walk TA s0 p0-1)

(walk TA p0-1 s1)

(board-truck TA truck2 s1)
(load-truck TA truck2 package2 s1)
(load-truck TA truck2 package3 s1)
(drive-truck TA s1 s0 truck2)
(unload-truck TA truck2 package3 s0)
(drive-truck TA s0 s2 truck2)
(load-truck TA truck2 packagel s2)
(unload-truck TA truck2 package2 s2)
(drive-truck TA s2 sO truck2)
(unload-truck TA truck2 packagel s0)
(disembark-truck TA truck2 s0)
(board-truck TA truckl s0)
(drive-truck TA s0 s2 truckl)

(c)

(at driverl s0)
(at driver2 s0)
(at truckl s0)
(empty truckl)
(at truck2 s1)
(empty truck2)
(at packagel s2)
(path sO p0-1)
(path sl p2-1)
(path p2-1 s1)
(link s0 s2)

(at truckl s2)
(at truck2 s0)
(at packagel s0)

(a)

(path s0 p0-2)
(empty truck2)
(empty truckl)
(at truck2 s1)
(path sl p2-1)
(at packagel s2)
(path sO p0-1)
(link s1 s2)
(path p0-1 s0)
(at TA s0)
(path po-1 s1)

(at truckl s2)
(at truck2 s0)
(at packagel s0)

(board-truck driver2 truckl s0)
(drive-truck driver2 s0 sl truckl)
(load-truck driver2 truckl package3 s1)
(drive-truck driver2 sl s0 truckl)
(unload-truck driver2 truckl package3 s0)
(drive-truck driver2 s0 sl truckl)
(load-truck driver2 truckl package2 s1)
(drive-truck driver2 sl s2 truckl)
(unload-truck driver2 truckl package2 s2)
(walk driverl sO p0-1)

(walk driverl p0-1 s1)

(board-truck driverl truck2 s1)
(drive-truck driverl s1 s0 truck2)
(disembark-truck driverl truck2 s0)
(load-truck driver2 truckl packagel s2)
(drive-truck driver2 s2 s0 truckl)
(unload-truck driver2 truckl packagel s0)
(drive-truck driver2 s0 s2 truckl)

(d)

Figure 1: (a) Original problem (b) Compiled problem
(c) Transformer agent plan (d) Multi agent plan pro-
duced from transformer agent plan
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to produce a multi-agent planner. We rely on our sys-
tem’s ability to simplify a complex multi-agent prob-
lem to a simpler transformer Agent problem to pro-
duce plans faster. In our current implementation, this
works only if the given problem can be solved by a sin-
gle transformer agent and has at least one non-agent
variable in the goal. There could be problems where
these assumptions are not met. So we make sure that if
the process fails to perform the compilation or fails to
produce a plan for the compiled domain, we switch to
an existing planner to solve the original problem. Our
use of a second planner to cover the failure cases en-
sures completeness, given that the planner that we use
is complete. Due to the approach we adopt in expan-
sion, our plans are not guaranteed to be optimal. The
Figure 1.a-1.d shows an example problem being solved
using our planner. We take a problem from the driver-
log domain, compile it to a transformer agent problem,
solve it and use the resultant plan to create a plan for
the original problem.

The different components in our planner are as fol-
lows:

e Compiler : This component is responsible for creating
a transformer agent problems, this component deter-
mines the agents to be combined and the initial state
of the transformer agent.

e Transformer agent solver : We use Fast Downward
(Cenamor et al 2014) or IBACOP (Helmert 2006) to
solve the transformer agent problem created in the
last step.

e Transformer agent plan expander : This step takes
the transformer agent plan and creates an equiva-
lent multi-agent plan. It does this by expanding each
step in the transformer agent plan to an equivalent
multi-agent plan segment. At the end we perform an
extra planning step to make sure all the required goal
predicates are satisfied by the expanded plan.

The algorithm for the planner is provided in Algo-
rithm 1:
Here there are two possible ways the planning process
could have failed:

e The planning problem could have failed to be com-
piled to a transformer agent problem. One possible
reason could be that there are no agent independent
goals. We solve this by solving the problem directly
using IBACOP.

e The planning of transformer agent problem could fail
( The planner could have timed out or planner might
have failed to find a solution). In such cases we rely
on IBACOP to solve the original problem.

Compiler

This is the component responsible for converting the
MA-PDDL problems provided to us into a transformer
agent problem. Here we make use of a modified ver-
sion of the convert.py provided to us by the competi-
tion organizers. This modified version produces the list
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Algorithm 1 Algorithm for MARC

Input: P (the original planning problem)
P’ = Compile_to_transformeragent(P)
Try solving the problem P’ using Fast Downward
with a timeout of 5 minutes to get a plan 7
if Above step times out then
Try solving the problem P’ using IBACOP with a
timeout of 5 minutes to get a plan 7

if the above step times out then

Try solving the problem P’ using Fast Down-

ward with a timeout of 10 minutes to get a plan 7

end if
end if
if All the previous steps timesout or fail to produce
a plan then

Solve the problem P using IBACOP to get a plan

’/T/

else
7’ = Expand_plan(w, P")
end if

of agents, the corresponding PDDL problem, a corre-
sponding transformer agent problem and a mapping of
each agent to their specific private objects. Also in our
approach we do not use all the agents specified in the
problem for creating the transformer agent, in fact we
only use the agents which has at best one action which
is private (i.e doesn’t interact with any other agents)
(Brafman et al 2008).

Once we have the new agent list, the next step is
to create a transformer agent object that can represent
any one of the original agents. We define this new trans-
former agent object to belong to all the agent types. For
example if the original agents in the problem were of
the type Truck and Airplane, then our new transformer
agent would be of both type Truck and type Airplane.
Next we update the initial state of the problem by re-
placing the agent object in each agent specific predicate
with the transformer agent object. For the transformer
agent problem goal we only consider the agent inde-
pendent goals. Once we have the new problem we move
onto the next step.

Transformer agent solver

Here we just use the standard Fast downward planner
running lazy greedy search with FF and CEA heuris-
tic. We have a five minute time out on this instance of
the planner, On timeout we switch to IBACOP planner
(Cenamor et al 2014) (modified to use less number of
planners) that again tries to solve the problem for an-
other 5 minutes. If both planners fail the first time, we
retry using Fast Downward for 10 minutes before just
moving on to using IBACOP to solve the original MAP.

Transformer agent plan expander

Next we move on to the expansion component, the pur-
pose of this component is to take the transformer agent
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plan and expand it to a multi-agent plan for the orig-
inal problem. Here we start with an empty final plan
and then for each step in the transformer agent agent
plan, we create a small Multi-agent plan equivalent to
that step and append it to the final plan. To achieve
this, each action of the transformer agent plan is con-
verted into multiple agent specific actions. We create
these actions by replacing the transformer agent by a
specific agent. We also replace any private objects ref-
erenced by that action with those of the specific agent
we are considering.

Next we look at the agent independent effects of
each of these new actions. We then run a small plan-
ning instance to find out the sequence of actions to
achieve the effect of each one of these new agent actions.
Once we have these plans we choose the smallest one
amongst them to be appended to the final plan. Here
for these smaller planning instances we chose to use
Metric-FF (Hoffmann 2003) to solve these problems.
The choice was based on the fact that it has a smaller
pre-processing time compared to the other planners we
considered. This is especially important as we will be
rerunning this planner many times in this component.

We also set a time out of one minute for each instance
of planning problem. In case any of these problems are
not solved, we carry over any goal predicate present in
the effects to the planning problem for the next step.
This ensures that the expanded plan can satisfy all the
goals, but we only perform this carry over of goal pred-
icates if that specific step is the last one capable of
producing that specific goal predicate. Once we have
expanded all the steps, if we have any goal predicates re-
maining, we try to plan for all the remaining goals. The
plan produced in each of these steps together form the
final plan. Since we run each of these planning instances
independently, we need to make sure that none of these
plans violate any of the already achieved final goal pred-
icates. We do this by appending the achieved final goal
predicates into the goal list of each smaller planning
problem. Once this stage is completed we should have
a complete plan for the original problem.

Conclusion

We have presented MARC, a multi-agent planning
method based on the recent work on required coopera-
tion. Based on the test domains provided to us in the
competition, our approach has been proven to produce
good results on nine out of ten domains. Here MARC
was able to improve the performance of planning on
these nine domains by compiling them down to a sim-
pler transformer agent problem. This shows that the
problems of these nine domains were in fact transformer
agent solvable. There remains a large set of possible
RC types which are not represented by the problem do-
mains considered in this competition (related to type-2
RC in Zhang et. al). These problems are expected to
be harder to solve compared to the DVC RC problems,
which forms the majority of the competition domains.
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Abstract

In this short paper we present the MADLA (Multi-
agent Distributed and Local Asynchronous) Planner
which entered the centralized track of the Competition
of Distributed and Multi-Agent Planners (CoDMAP).
The planner combines two variants of FF heuristic, a
projected (local) variant and a distributed variant, in
a multi-heuristic state-space search. The main idea of
the search is that while waiting for the computation of
the distributed heuristic, the local one asynchronously
continues the search.

Introduction

In most domain-independent multi-agent planners
based on heuristic search one of two types of heuristic
are used. First is a projected (local) heuristic, that is a
heuristic computed only on the particular agent’s part
of the problem, second is a distributed heuristic typi-
cally using some way of sharing information between the
agents to compute a global heuristic estimate. Often,
one of the approaches performs better on some bench-
marks.

The MADLA (Multiagent Distributed and Local
Asynchronous) Planner is a domain-independent deter-
ministic multi-agent state-space heuristic search plan-
ner based on the idea of combining projected (local) and
distributed heuristics in multi-heuristic search. The
planner is centralized, it runs in multiple threads (one
thread per agent + communication thread) in a sin-
gle process on a single machine. The agents can com-
municate either using in-process communication or via
TCP-IP local loopback (the communication could pos-
sibly run over a network).

The MADLA planner is based on the MA-STRIPS
formalism (privacy, factorization), although internally
it uses a multi-valued representation of the states. As
an input, the planner can use the unfactored MA-PDDL
as input, but it translates it to plain PDDL + list of
agents, which is then internally factored based on the
MA-STRIPS rules.

The MADLA planner aims to preserve the privacy
of the participating agents. The agents exchange no

Copyright (© 2015, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.
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private information, except for the following two excep-

tions:

i) The description of the state contains the private
parts of all agents, although other agents cannot in-
terpret the private parts of other agents (they are not
in their domain).

ii) The Set-Additive Lazy FF heuristic used exchanges
hash codes of private actions, that is the other agents
knows the number and identity (in the sense it knows
whether the same private action was already used) of
other agent’s private actions, but they do not know
the action’s preconditions, effects, and signature.

The planner uses a simple distributed plan extrac-
tion procedure and stops whenever any of the agents
finds a solution. Also, the planner uses a variant
of greedy best-first search and the FF heuristic and
thus is not optimal. Apart form the MADLA con-
figuration, it can be used to use only the projected
heuristic, only the distributed heuristic and multi-
ple other configurations. The planner is written in
Java and is available under the GNU-LGPL licence at
https://github.com/stolba/MADLAPIanner.

Planner Architecture

In the current implementation, the planner is written
as monolithic, each agent running in its own thread.
The architecture and processing of input is shown in
Figure 1. The planning process starts with either MA-
PDDL, which is translated to plain PDDL and ADDL
(in fact a list of agents), or directly with PDDL and
ADDL. The PDDL is then translated to SAS+ using
the Fast-Downward (Helmert 2006) translator. Both
SAS+ and ADDL is then fed to the centralized starting
point (a Java executable), which parses the SAS+ input
and performs a factorization based on the MA-STRIPS
rules.

Actions are assigned to agents based on the first ac-
tion parameter equal to some of the agent objects pro-
vided. Facts shared among agents are then determined
and treated as public. Each agent is then started and
provided with its factor of the problem - that is its ac-
tions, projections of other agent’s public actions, a set
of variables and their domains, the initial state and the
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goal condition. Although the states are shared includ-
ing the full information, each agent projects each state
to its set of variables and its portions of the domains.

Distributed FF Heuristic

The MADLA planner uses two variants of the well
known Fast-Forward heuristic (Hoffmann and Nebel
2001).  The projected heuristic, denoted as hph
where «; is the particular agent, uses only the
part of the problem known to «j;, that is its ac-
tions, facts and «;-projections of other agent’s ac-
tions. An ay-projection of some action a is a® =
(pre(a) N P;,add(a) N P;,del(a) N P;) where P; are the
facts known to «; and pre(a),add(a), del(a) are the pre-
conditions, add effects and delete effect of action a re-
spectively.

The distributed heuristic is a Set-Additive (SA) vari-
ant of the Lazy FF heuristic (Stolba and Komenda
2013; 2014), denoted as hgalazyrr. We take inspira-
tion from the Set-Additive variation of the FF heuris-
tic (Keyder and Geffner 2008), where instead of cost of
reaching a fact p in a planning problem IT = (P, A, I, G),
each fact p is associated with a relaxed plan 71'1',“ solving
a relaxed planning problem where p is the goal G = {p}.
The overall relaxed plan 7+ is then constructed by com-
puting a set unions of the respective fact relaxed plans

at = U 71'; , (1)
peEP
which is possible as the order of the actions in a relaxed
plan can be arbitrary and using any action more than
once is redundant.

The general idea of Lazy FF is that some agent «;
starts the computation of a projected FF heuristic. The
resulting relaxed plan may contain some projected ac-
tion a®* such that a belongs to some other agent «;.
Notice, that a® may ignore some preconditions of a
private to a; and thus the action may not be applica-
ble in the global (relaxed) problem. This can also be
seen that the cost of a is underestimated. In Lazy FF,
a request is sent to «; to obtain the true cost. When
the request is received, a; computes the FF heuristic
to a restricted relaxed problem, where the goal is the
set of private preconditions of a. Agent «; then re-
turns cost of the found relaxed plan, together with a
set of (public) actions of other agents, which appear in
the relaxed plan and need to also be resolved. This
ensures, that only the initiating agent sends requests
while other agents only compute replies, thus prevent-
ing (flattening) a distributed recursion.

The distributed process of Lazy FF may compute
relaxed sub-plan for a single fact multiple times, re-
sulting in overcounting of actions and worse estimate.
In Set-Additive Lazy FF, the agents do not send the
intermediate costs ¢, c%*, ..., but the relaxed plans
7@+ w7+ . which are then merged by the initiating
agent «;. The resulting heuristic estimate ¢ is the cost
of the merged relaxed plan. The SA Lazy FF estimator
in the recursive form follows:
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1. The agent «; initiating the estimation locally com-
putes a projected relaxed plan 7%* which is a solu-
tion of a relaxed projected problem IT%T.

2. For each projected action a®+ € 7% 7, the initiator
agent «; sends a request to the action’s owner agent
o;. Upon receiving, o; computes partial RP 7% as
a solution of a relaxed projected problem 57" and
sends g’ to the initiator agent as a reply.

3. The agent «; may need to ask other agent(s) ay, in

the same manner, resulting in a distributed recursion

merging the partial relaxed plans: 7% % «+ 7o+ U
Tkt

4. The initiator agent merges the received relaxed plan

7% with the initial RP 7%t ¢+ 7%+ U g%* and
returns its cost: ), .+ c(a).

In the implementation, the recursion is flattened the
same way as described for the Lazy FF heuristic.

Similarly to the Lazy FF estimator, we have to ex-
plicitly consider that in the 2nd step, no solution for
I+, 1% ... may exist. Such situation indicates a
dead-end on preconditions pre(a). As it is not cheaply
possible to find out if another relaxed plan 7% could
be used, we ignore the information and return the
heuristic as if the action was reachable (and the replied
relaxed plan 7@+ 7%* . empty). This causes the
heuristic to report non-oco estimates for dead-end states
(will not be safe). Since the FF heuristic is not safe by
itself and the practical efficiency gains are substantial,
we conclude it is not a (practical) problem.

MADLA Search

The observation of different coverage results of the
projected and distributed FF heuristics led to the
consideration of a search scheme possibly combining
both heuristic variants in a positive manner. The
classical multi-heuristic search as used in the Fast-
Downward (Helmert 2006) and LAMA (Richter and
Westphal 2010) planners did not show promising re-
sults as the pair of the hgh and hgalasyrr heuristics
does not have the important property of orthogonal-
ity, that is giving significantly different results in the
same states. But there are interesting properties of this
heuristic pair which may be exploited. Such properties
are defined as follows.

Definition 1. A heuristic estimator of a heuristic func-
tion h for a planning problem II¢ run by agent o is
non-blocking iff the computation of A does not block
the computation process of agent «a; for the whole du-
ration of the computation of h.

For example a global heuristic estimator can require
computation of parts of the heuristic estimate by other
agents. If such heuristic algorithm is non-blocking, it
does not wait for responses from other agents and allows
the agent to run asynchronously while waiting for the
responses, that is, the agent can use the time to perform
some other computations.
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Figure 1: MADLA Planner architecture

A definition of dominance is the same as in the clas-
sical planning:
Definition 2. A heuristic function hy dominates a

heuristic function hy for a planning problem IT iff for
all states s € 2F hold that hy(s) > ha(s).

Finally, we need a relation between two heuristics
describing their relative computational hardness:

Definition 3. A heuristic estimator of a heuristic func-
tion h; is computationally harder than heuristic esti-
mator of a heuristic function hy for a planning problem
IT iff for all states s € 2¥ holds that computation of
hi(s) takes the same or longer time than computation
of ha(s).

With the help of the three definitions, we can define
properties of a pair of heuristics which is required for
the MADLA search:

Definition 4. For a multi-agent planning problem II,
let h. be a heuristic function for II and let hp be a
heuristic functions for the global problem II¢. The
heuristics h. and hp are MADLA heuristic pair iff hp
uses a non-blocking estimator by Definition 1, hp dom-
inates hy by Definition 2, and hp estimator is compu-
tationally harder then h_ estimator by Definition 3.

The intuition behind the properties is that the search
combines a computationally fast heuristics A working
not necessarily with all the information in the problem
therefore likely with worse estimation and a computa-
tionally slower heuristics hp working with global infor-
mation such that the agent using the estimator can get
additional information from other agents (e.g, in the
form of increasing cost of some actions). Therefore
the global heuristic estimate is higher than the local
estimate. Such combination can work smoothly only
if hp does not block the agent using it, therefore the
last property required allows the agents to continue the
search using h whilst waiting for responses from other
agents computing parts of hp.

As alocal hi, we can use the projected FF (hpk) and
as a distributed (global) hp we can use the Set-Additive
Lazy FF (hsalasyrr), because this pair of heuristics
comply with the Definition 4.
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The principle of MADLA Search

The classical multi-heuristic search works on the prin-
ciple of having a separate open list for each heuristic
used. The states are extracted from the open list in an
alternating manner, each state is evaluated by all used
heuristics and placed in respective open lists with the
computed value.

Unlike the classical multi-heuristic search, in
MADLA search, the extracted states are not evaluated
by both heuristics, the used heuristic evaluator depends
instead on the state of the distributed heuristic hp. If
the distributed heuristic is not busy (not computing a
heuristic for some state) state is evaluated by hp. If hp
is in a process of computing a heuristic for some state
(that is, waiting for replies for other agents), the state
is evaluated by h_. The distributed heuristic is always
preferred. This approach is most reasonable if hp dom-
inates h|, which holds for the local FF and SA Lazy FF
heuristics.

The local heuristic search is performed only when
the distributed heuristic search is waiting for the dis-
tributed heuristic estimation to finish. This principle
makes sense only if finishing a estimation of hp takes
longer than of hy and if computation of the hp esti-
mator does not block the search process (incl. hp esti-
mations). These two requirement hold for the local FF
and SA Lazy FF as well.

Separation of the searches using two open lists (Op
for hp and O\ for k) has the benefit of using two heuris-
tics in parallel, but if some information between the
two searches could be shared!, most importantly the
heuristically best state found so far, it could boost the
efficiency of the search. The direction Op — O is
straightforward, thanks to the fact that hp dominates
h.. We can add all nodes evaluated by hp also to O
without ever skipping a better state evaluated by AL
with a worse state evaluated by hp.

The other direction O, — Op is trickier. If we added
a node s evaluated by h_ to Op it would skip many

!The two searches both run on one agent, therefore the
question of privacy is irrelevant here.
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nodes which are actually closer to the goal only be-
cause the local, less informative heuristic, will give a
lower estimate. The way at least some information can
be shared in this direction is whenever the open list
Op becomes empty and the heuristic estimator hp is
not computing any heuristic, a state s is pulled from
the local open list O and evaluated by the distributed
heuristic hp and its successors are added to both open
lists, as already described. This way, the nodes in Op
are evaluated only by hp, but sometimes, the best node
from O is taken. The situation is illustrated in Figure
2.

hp - Distributed
Heuristic Estimator

Expand h, - Local

Heuristic Estimator

!

If hp busy

Expand

If hp not busy If Op empty
LI Op - Distributed 1O - Local
Open List Open List

Figure 2: Distributed/Local Search - OPEN lists and
heuristic estimators.

The implementation of the distribution in the
MADLA search follows the principles of MAD-A* (Nis-
sim and Brafman 2014), i.e., broadcasts are used to
inform other agents about states reached by public ac-
tions. Additionally, information to which open list the
state should be added in is included (whether it is the
local or the distributed one).

Final Remarks

The MADLA Planner combines search using a pro-
jected and distributed heuristic in a non-trivial way.
Also the experiments we have conducted shows, that
the results (in terms of coverage) are not a trivial max-
imum of the results of pure projected and pure dis-
tributed heuristics. In many cases, the coverage is even
higher, that the maximum which suggests positive syn-
ergy of the two searches. There are some cases, where
the MADLA planner performs worse than the pure pro-
jected heuristic, which is in cases where the distributed
heuristic performs poorly (is too communication inten-
sive and does not give enough benefits). That is be-
cause the distributed heuristic is preferred, but still, if
the projected heuristic starts computation, it is never
interrupted.
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Abstract

MH-FMAP is a fully-distributed Multi-Agent Planning sys-
tem where each agent is designed as a forward-chaining
partial-order planner. MH-FMAP applies a complete and sub-
optimal distributed A* search alternating two heuristic func-
tions. This distributed nature enabled MH-FMAP to partici-
pate in the two tracks of the 2015 Competition of Distributed
and Multiagent Planners.

Introduction

Cooperative Multi-Agent Planning (MAP) introduces a set
of planning entities which work together in a shared de-
terministic environment in order to attain a set of common
goals. Agents in MAP synthesize individual plans and coor-
dinate them to come up with a joint solution plan. The state
of the art in MAP includes a wide variety of methods that
range from centralized to distributed planning and coordina-
tion.

The application of pre-planning decomposition methods
is commonly used in MAP. In ADP (Crosby, Rovatsos, and
Petrick 2013), single-agent tasks are decomposed into MAP
tasks and then solved with a centralized state-based planner,
and MAPR (Borrajo 2013) allocates the task goals among
agents, which then solve their problems sequentially: one
agent at a time solves its subgoals using the plans previously
computed by the prior agents.

A large number of MAP techniques opt for a post-
planning coordination or plan merging scheme where
agents’ local plans are merged or coordinated into a global
plan that solves the MAP task. In Planning First (Nissim,
Brafman, and Domshlak 2010), for instance, agents use a
state-based planner to compute their local plans and these
plans are later coordinated through a distributed Constraint
Satisfaction Problem.

A third group of approaches directly apply multi-agent
search, interleaving planning and coordination. MA-A*
(Nissim and Brafman 2012) performs a distributed A*
search, guiding the procedure through admissible local
heuristic functions.

In this paper we outline MH-FMAP (Torrefio, Sapena, and
Onaindia 2015), our contribution to the 2015 Competition

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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of Distributed and Multi-Agent Planning (CoDMAP in the
following). MH-FMAP is a fully-distributed MAP system
that can be run either in a centralized or distributed manner
and participated in both tracks of the CoODMAP.

MH-FMAP performs a cooperative heuristic-based multi-
agent A* search. Each node in the search tree is a partial-
order plan possibly contributed by more than one of the par-
ticipating agents in a forward-chaining fashion.

MH-FMAP is the first MAP method to apply a multi-
heuristic search scheme. Agents assess the quality of the
partial-order plans by alternating two state-based distributed
heuristic functions: hprqg (Torrefio, Onaindia, and Sapena
2014), a variation of the Context-Enhanced Additive heuris-
tic (Helmert and Geffner 2008) based on Domain Transition
Graphs (Helmert 2004); and hrqnq, @ privacy-preserving
version of the landmark extraction algorithm introduced in
(Hoffmann, Porteous, and Sebastia 2004).

Agents are autonomous planning entities in MH-FMAP.
This way, an agent is initialized as an independent execution
thread/process with an embedded planning machinery and
a communication infrastructure. An agent can make use of
more than one execution thread or the whole CPU if avail-
able. This flexibility enabled our planner to participate in
both CoODMAP tracks without major core modifications.

On the other hand, privacy is maintained throughout the
planning process. Agents preserve privacy by occluding in-
formation regarding the literals in preconditions and effects.
Therefore, the notion of privacy in MH-FMAP complies
with the requirements established in the CoODMAP guide-
lines.

This paper is organized as follows: first, we briefly present
the key notions of MH-FMAP, including the search scheme
and the heuristic functions. Next, we detail the main changes
and adaptations carried out to comply with the competition
rules. Finally, we present a brief discussion on how the adap-
tation of MH-FMAP to the CoDMAP affected its perfor-
mance.

The MH-FMAP Planning Framework

MH-FMAP is a complete and suboptimal cooperative MAP
system in which agents jointly explore a plan-space search
tree. The nodes of the tree are partial plans contributed by
one or several agents. Agents estimate the quality of each
partial plan by means of the alternation of two state-based
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heuristic functions. This section summarizes the main fea-
tures of MH-FMAP.

Input language. MAP tasks in MH-FMAP are described
by using a customized definition language based on
PDDL3.1 (Kovacs 2011). Tasks are encoded through a fac-
tored description so that each agent receives its own domain
and problem file.

The world states in MH-FMAP are modeled through state
variables instead of predicates. The initial state of the task,
along with the preconditions and effects of the operators, are
described as variable-value tuples or fluents in the input files.

The problem files include an additional : shared-data
section to model the agents’ privacy. By default, all the in-
formation regarding the agent’s fluents is considered private.
The :shared-data section specifies the fluents that an
agent can share with each other agent in the task.

Privacy. Agents keep privacy throughout the MAP pro-
cess by sharing only the information of the fluents that are
specifically defined as shareable in the :shared-data
section of the input files. The mechanisms used to occlude
private information are detailed in (Torrefio, Sapena, and
Onaindia 2015).

Search process. Agents in MH-FMAP apply a complete
and suboptimal distributed A* search, which generates a
common search space or multi-agent search tree for all
agents (see Algorithm 1). The search process is led by an
agent that plays the role of coordinator, which is rotated af-
ter each iteration of the planning procedure.

Agents estimate the quality of the plans by using two dif-
ferent heuristic functions, hpra and hrqnq (see next sub-
section for details). Recent works in single-agent planning
have proven the benefits in terms of performance and scala-
bility of combining multiple heuristics (Roger and Helmert
2010). This conclusion is backed up by the well-known plan-
ning systems Fast Downward (Helmert 2006) and LAMA
(Richter and Westphal 2010), which successfully apply a
heuristic alternation approach to state-based planning. The
alternation technique has been experimentally proven to be
more efficient than other heuristic combination methods,
such as sum, weighted sum, maximum or Pareto (Rdger and
Helmert 2010).

Agents in MH-FMAP alternate hprg and hpgng by
maintaining two different lists of open nodes, openList
and preferredList. The openList maintains all the open
nodes of the multi-agent search tree ordered according to
the evaluation function f(II) = ¢(IT) + 2 * hppg(II). The
preferredList keeps only the preferred successors, sorted
by f(II) = hrana(Il). We consider a refinement plan II,.
to be a preferred successor of a plan IT iff hpnq(I1,) <
hLand(H)'

Agents start an iteration of the MH-FMAP procedure by
alternatively selecting the most promising open node from
openList or pre ferredList as a base plan 11, (see the first
if-else instruction of the while loop in Algorithm 1). Agents
individually expand II, and every generated node is inserted
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in a set of refinement plans called RP. Each agent is pre-
pared to synthesize refinement plans autonomously through
an embedded forward-chaining partial-order planner.

Once the refinement plans in RP are obtained, agents
exchange them and apply a distributed heuristic evaluation
of the refinement plans using both hppg and hpgpng. Once
evaluated, the plans in RP are stored in openList. If a plan
in RP is a preferred successor of 11, it is introduced in both
openList and pre ferredList. The procedure ends up when
a solution plan is found, or when all the open nodes have
been explored.

Algorithm 1: MH-FMAP algorithm for an agent ¢

openList < Iy, preferredList < ()
list < true

while open List # () do

if list = true then

| 11y < extractPlan(openList)

else

| Iy < extractPlan(preferredList)

list < —list
if isSolution(II;) then
| return II,
RP + refinePlan(Ily)
forall j € AG,j # ido
sendRe finements(j)
RP + RP UreceiveRefinements(j)

for all II,. € RP do

distributed Evaluation(Il,., hpra)

distributed Bvaluation(IL,., hrana)

openlList < openList UL,

if hiand (HT) < hLand(Hb) then
LpreferredList + preferredList UIL,

return No solution

Heuristic functions. MH-FMAP alternates hprg and
hLand, tWo state-based heuristic functions, to improve the
overall performance of the system. The first heuristic func-
tion, hprgq, is an additive heuristics that uses Domain Tran-
sition Graphs (DTGs) to estimate the cost of a plan. A DTG
is a graph in which nodes represent values of a particular
variable, and transitions show the changes in the values of
such variable through the actions of the agents.

Similarly to the hcga, hpre builds a relaxed plan and
reuses the side effects of the actions in the relaxed plan as
a basis to estimate the cost of the subsequent subgoals. A
plan IT of FMAP is always evaluated from its frontier state,
FS(II), but the cost of some of the subgoals can be esti-
mated in a state different from F'S(II). hpre(II) returns
the number of actions in the relaxed plan as an estimate of
the cost of the plan II.

The second heuristic function, hr 4,4, computes the Land-
marks Graph (LG) of the MAP task, which is later used to
calculate the number of landmarks achieved by the partial
plans. hyqnq is used to determine the preferred successors
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of each base plan. This is a very effective resource when the
primary heuristic gets stuck in a plateau.

hiana uses landmarks, fluents that must be satisfied in
every solution plan of a MAP task, as the basis of its calcu-
lation. Prior to the planning process, agents jointly generate
the Landmarks Graph, LG = {N,V}, where N is a set of
landmarks and V is a set of necessary orderings between
the landmarks. A necessary ordering I’ <,, [ implies that
the landmark [’ should be achieved before [ in all the solu-
tion plans for the task. The LG is then used to estimate the
quality of the refinement plans in MH-FMAP. Given a plan
I1, hArana(IT) returns an estimate of the quality of IT as the
number of single landmarks not satisfied in II.

hpra and hpgp,g are designed to minimize the number
of messages exchanged among the agents. The data struc-
tures of hprq, the DTGs, and of hp,,q4, the LG, remain
unalterable throughout the multi-agent search, thus reduc-
ing the communication overhead. The use of static struc-
tures makes hpra and hpq.nq suitable heuristics for fully-
distributed systems.

Private information is guaranteed during the heuristic
evaluation of the plans since agents do not transmit private
information regarding the plan at hand. Only heuristic esti-
mates are transmitted during the evaluation process.

Adaptations for the CoDMAP competition

Several adaptations were made in MH-FMAP to comply
with the CoODMAP rules. Due to the complexity of the par-
tial plans it synthesizes, MH-FMAP was originally designed
as a graphical tool!. However, an additional command-line
user interface was added to facilitate the use of scripts. Aside
from the new user interface, other updates related to the in-
put, output and communication infrastructure were applied
in MH-FMAP.

Input. In order to give support to the new MA-PDDL
specification, we developed a pre-parser that translates the
factored MA-PDDL input into our customized language.
More specifically, the private information specified in the
MA-PDDL files is compiled into the : shared-data sec-
tion.

Since the : shared-data section represents the public
information of the task, the pre-parser automatically infers
the non-private predicates from the MA-PDDL input and
incorporates them into the : shared—-data section of the
problem files.

As a result of this change, MH-FMAP is able to support
factored MA-PDDL and complies with the privacy rules es-
tablished in the tasks of the CODMAP benchmarks.

Output. MH-FMAP returns partial-order solution plans in
which no total order is forced among the actions. In order to
make the solutions compatible with the plan validator, we
performed a conversion of the planner’s output.

"http://users.dsic.upv.es/grupos/grps/tools.php
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Figure 1: DTG for a state variable and a predicate

In the centralized track, plans are linearized as a sequence
of actions. Whenever parallel actions are found, the conver-
sion algorithm forces an arbitrary ordering among them.

Regarding the distributed track, the guidelines allow for
parallel actions of different agents. In some cases, partial-
order plans can contain parallel actions of the same agent.
For this reason, in case the plan includes parallel actions
of an agent, we prioritize the action that is followed by the
longest sequence of actions. This way, we effectively mini-
mize the makespan of the resulting plan as much as possible.

Communications. As in most distributed frameworks,
communications play a central role in MH-FMAP. Agents
communicate by means of the FIPA Agent Communication
Language (O’Brien and Nicol 1998). Originally, the system
used the Apache QPid> message broker, a component of the
Magentix2® MAS platform, to handle communications.
During the early tests in the CODMAP server, we noticed
that QPid caused an important slowdown. For this reason,
we rewrote the communications using sockets. This way,
the current implementation of MH-FMAP is faster and more
compact, since it does not rely on external components.

Limitations of MH-FMAP in CoODMAP

The setup provided by the organizers of the CoODMAP has
undeniable advantages. On the one hand, MA-PDDL has the
potential to become a de facto standard for MAP. On the
other hand, CoODMAP has provided the community with a
standard benchmark of MAP tasks that can be used to com-
pare the performance of the different approaches.

Nevertheless, the CODMAP setup is far from being ideal
for MH-FMAP. Despite MA-PDDL is an extension to
PDDL3.1, the CoODMAP benchmarks are purely proposi-
tional. This fact directly affects the performance of MH-
FMAP since its main heuristic, hprq, makes extensive
use of the state variables. In order to adapt MH-FMAP to
CoDMAP, we converted literals into binary variables within
a true-false domain. Binary variables offer very poor infor-
mation of the MAP task, which compromises the precision
of h DTG-

Figure 1 illustrates this issue by depicting two DTGs in-
ferred from the sokoban p01 task. The first DTG, synthe-
sized from the state variable that keeps track of the position
of agent player01, shows the complete game board for

“http://qpid.apache.org
*http://www.gti-ia.upv.es/sma/tools/magentix2
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this task and all the connections among positions. In turn, in
the propositional version of the task, MH-FMAP will infer a
set of true-false DTGs, one per position in the board (Figure
1 on the right displays the DTG for the position pos—1-2).

In (Torrefio, Sapena, and Onaindia 2015), we evaluated
MH-FMAP through a benchmark that contains most of the
domains of the CoDMAP. In these domains, state vari-
ables were extensively used to define initial states, precon-
ditions and effects. However, the early tests performed for
the CoODMAP setup, with the conversion of fluents into lit-
erals, showed worse results in terms of coverage and execu-
tion time. Therefore, a more sophisticated conversion pro-
cedure from literals to state variables is actually required to
improve the performance of MH-FMAP when running it in
the CoODMAP setup.

The quality of the plans returned by MH-FMAP is also
limited by the competition rules. MH-FMAP is highly effec-
tive at parallelizing actions and minimizing the makespan of
the solution plans (Torrefio, Sapena, and Onaindia 2015). In
order to comply with the CoODMAP rules, the makespan of
the solution plans is noticeably increased in most cases.

Since the rules of the centralized track determine that the
planner must return sequential plans, the makespan in this
case always equals the number of actions of the solution
plan. The distributed track allows for parallel actions of dif-
ferent agents; however, each agent must return a sequence
of actions. Since MH-FMAP is designed to reason with par-
allel plans, the quality of the solution plans in the CoODMAP
benchmarks diminishes in some cases.

Conclusions

In this paper, we have presented MH-FMAP, the MAP sys-
tem we submitted to the centralized and distributed tracks
of the 2015 CoDMAP. MH-FMAP is a fully-distributed sys-
tem that performs a complete and suboptimal A* search and
synthesizes partial-order plans contributed by several agents
built in a forward-chaining fashion. MH-FMAP incorporates
a novel multi-heuristic search scheme that alternates two
global heuristics, hprg and hzqnq. These heuristics require
the interaction of agents in order to assess the quality of the
plans and rely on immutable and privacy-preserving struc-
tures that are calculated in pre-planning time.

MH-FMAP takes factored MA-PDDL tasks as an input
and maintains the privacy defined in the task description
throughout the planning process. During planning, agents
communicate partial plans and occlude the preconditions
and effects that are private according to the MA-PDDL files.

The CoDMAP setup presents some disadvantages for our
planner. On the one hand, the CoDMAP benchmarks con-
sist of propositional planning tasks. This worsens the perfor-
mance of MH-FMAP, which is optimized to deal with tasks
defined through state variables. On the other hand, the qual-
ity of the solution plans is also affected by the rules, since we
are forced to provide either a sequential plan or a sequence
of actions per agent.
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Abstract

One possible approach to domain independent multia-
gent planning (DMAP) is to equip all the agents with in-
formation about public actions of other agents. This al-
lows every agent to plan public actions for other agents.
This approach can be used together with planning state
machines (PSM) which provide a compact representa-
tion of sets of plans. In a PSM-based planner, every
agent keeps generating plans and stores the generated
plans in a PSM. This process continues until a plan ac-
ceptable for all the agents is found.

We describe PsSM-based planners submitted to the
Competition of Distributed and Multiagent Planners
(CoDMAP) held at DMAP Workshop of ICAPS 2015.
We describe two configurations of a PSM-based plan-
ner which differ in the set of used features, and in the
amount of private information revealed to other agents.
Both of these two configurations can be used both in
a distributed and a centralized setting. Hence we de-
scribe altogether four PSM-based planners submitted to
the competition.

Introduction

In domain independent multiagent planning (DMAP) sev-
eral cooperative agents tries to find out a distributed plan
which leads to a common goal. The most widely used
STRIPS-based model of DMAP is MA-STRIPS (Brafman
and Domshlak 2008) which defines basic concepts of pub-
lic and internal information. In MA-STRIPS, agents can
either plan only with their own actions and facts and in-
form the other agents about public achieved facts, as for in-
stance in the MAD-A* planner (Nissim and Brafman 2012),
or can also use other agents’ public actions provided that
the actions are stripped of the private facts in preconditions
and effects. Thus agents plan actions, in a sense, for other
agents and then coordinate the plans (ToZicka, Jakubtv, and
Komenda 2014).

Recently introduced planning approach (Tozicka,
Jakubtiv, and Komenda 2014) equip all the agents with pro-
jections of public actions of other agents. These projections
are called external actions. Planning state machines (PSM)
are basically a finite automatons representing a set of plans.

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Two basic operations are naturally defined on PSM’s: (1)
public projection (restriction to public information) of a
PsM, and (2) intersection of two public PSM’s. A generic
distributed PSM-based planner keeps generating new plans
for every involved agent. The generated plans of one
agent are stored in a PSM from which a public projection
can be computed. Public projections of PSM’s of all the
agents contain only public information a thus can be freely
exchanged among the agents. Hence their intersection can
be computed and an non-empty intersection constitutes a
solution of the problem at hand.

Basic architecture of a PSM-based planner was described
recently (ToZi¢ka, Jakubiv, and Komenda 2014). The fol-
lowing improvements and modifications were implemented
in the planners submitted to CoODMAP.

(EXT-V) Extension with plan analysis and verification of
generated plans (Jakubtiv, Tozicka, and Komenda 2015).

(EXT-R) Extension with an initial (delete-)relaxed plan
landmark. This extension is briefly described in the next
section.

(EXT-D) Extension with analysis of internal dependen-
cies of public actions introduced quite recently (ToZicka,
Jakubuv, and Komenda 2015).

All the above extensions are briefly described in the fol-
lowing section. The extensions can be furthermore com-
bined together and we have decided to use the following two
planner configurations for the competition.

(PSM-VR) Basic PSM planner with extensions EXT-V and
EXT-R.

(PSM-VRD) Basic PSM planner with all extensions, that is,
EXT-v, EXT-R, and EXT-D.

Both the planner configurations can be used both in a
centralized and a distributed setting which gives us together
four planners submitted to the competition. All the planners
are complete but not optimal. All the planners use MA-
STRIPS privacy classification. In the centralized setting,
planners compute MA-STRIPS classification themselves,
while in the distributed setting, the classification provided in
input files is used. All the planners use agent factorization
from the input files. Differences and features are described
in the following sections.
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Generic PSM Planner Architecture

PSM planner main idea is based on planning with external
actions, where a local planning problem is constructed for
every agent a. A local planning problem 11>« of agent «,
also called projection of 11 to «, is a classical STRIPS prob-
lem containing all the actions of agent « together with ex-
ternal actions, that is, public projections other agents public
actions. The local problem of « is defined only using the
facts of o and public facts, hence no private information is
revealed.

Theoretical Background

This section briefly describes conditions which allow us to
compute a solution of the original MA-STRIPS problem II
from solutions of local problems 11> a.

A plan 7 is a sequence of actions. A solution of Il is a plan
7 whose execution transforms the initial state to a superset
of the goals. A local solution of agent « is a solution of
IT> o Let sols(IT) denote the set of all the solutions of MA-
STRIPS or STRIPS problem II. A public plan o is a sequence
of public actions. The public projection > * of plan T is the
restriction of 7 to public actions.

A public plan o is extensible when there is € sols(II)
such that 7> * = ¢. Similarly, o is a-extensible when there
is m € sols(II>«) such that 7>+ = o. Extensible public
plans give us an order of public actions which is acceptable
for all the agents. Thus extensible public plans are very close
to solutions of II and it is relatively easy to construct a so-
lution of IT once we have an extensible public plan. This
process is described below.

The following theorem establishes the relationship be-
tween extensible and a-extensible plans. Its direct conse-
quence is that to find a solution of II it is enough to find
a local solution 7, € sols(II>«) which is S-extensible for
every agent 3.

Theorem 1. Public plan o of 11 is extensible if and only if
o is a-extensible for every agent a.

The theorem above suggests a distributed multiagent
planning algorithm described in Algorithm 1. Every agent
executes this algorithm, possibly on a different machine (in
centralized version, only the loop is executed in parallel by
all the agents). Every agent keeps generating new solutions
of its local problem and stores solution projections in set ®,.
These sets are exchanged among all the agents so that every
agent can compute their intersection! ®. Once the intersec-
tion @ is non-empty, the algorithm terminates yielding ® as
the result. Theorem 1 ensures that every public plan in the
resulting P is extensible.

The sets of plans ¢, are represented using planning state
machines, PSMs, which are based on common finite state
machines. PSMs allows to effectively represent large sets
of plans and also to effectively implement the intersection
of different agents sets of plans. Consult (Tozicka, Jakubuv,
and Komenda 2014) for more details on algorithms and im-
plementation.

In our competition implementation, the intersection is com-
puted only once by a specialized broker agent that also mediates
the communication among the agents.
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Algorithm 1: PsM Planner Algorithm.

t Function PsMPlanner(II> o) is
II, + GroundProblem (II>a);

[

3 if EXT-D then

4 II, < ComputeDependencies (Il,);
5 if all agents published dependencies then
6 \ return any solution of IT,, > ;

7 end

8 end

9 if EXT-R then

10 TR + CreateRelaxedPlan (II);

1 II, + AddLandmarks (Il,, 7r>a);
12 end

13 o, — 0;

14 loop

15 Ty < GenerateNewPlan (Il,);

16 if EXT-V then

17 | 7 < VerifyPlan (mq>%);

18 end

19 D, — Dy U{ma >k}

20 exchange public plans ® 4 with other agents;
A P+ ﬂﬁeagents(n) Pp;

2 if ® £ () then

23 | return ®;

24 end

25 forall the 8 € agents(II) do

26 | II, < AddLandmarks (II, ®3);
27 end

28 end

29 end

The rest of this section describes methods of the basic ver-
sion of the PSM algorithm (that is, without EXT-D, EXT-R,
and EXT-V). The extensions are briefly described in the next
section.

Problem Grounding

All the input problems are provided in a PDDL files
which might contain parametric actions. Our algorithm re-
quires grounded actions and hence the input is grounded
as the first step. Specific implementation of method
GroundProblem is crucial. It has to generate all possible
usable action instances but it should not generate any action
instance that cannot be really performed. Otherwise, other
agent could use that action in their plans. Since this method
is not in the center of our current research, it is a bottle-
neck which significantly influences planner performance in
certain domains. Implementations of a grounding algorithm
differ in the centralized and distributed settings.

Centralized version. First step of the centralized ground-
ing algorithm is to merge all the problems of all the agents
into a single problem. Then the translate.py algorithm of
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Fast Downward is used to find all reachable grounded ac-
tion instances. Agent problems are then separately grounded
to match these actions and the algorithm continues with this
grounded multi-agent problem.

Distributed version. In distributed versions, method
GroundProblem protects agents privacy. Agents create
distributed planning graph and then ground their problem
to actions that appear in this planning graph. The planning
graph is additionally reused by extension EXT-R described
in the next section.

Public Solution Search

Every agent keeps generating new plans and shares their
public projections with other agents. Local planning prob-
lems are common STRIPS problems which can be solved
by any classical STRIPS planner. The only special re-
quirement on the underlaying planner is that the plan-
ner must be able to generate a plan which differs from
the previously generated plans. In our implementation,
method GenerateNewPlan uses a modified version of
FastDownward? planner (Jakubtiv, ToZi¢ka, and Komenda
2015).

The generation of new local plans is further guided by
the knowledge obtained from PSM’s of other agents so
that the plan generation is driven towards the plans gen-
erated by other agents. The knowledge from PSM’s of
other agents is compiled into the local problem by function
AddLandmarks using the principle of soft action land-
marks and action costs (Jakubtv, Tozicka, and Komenda
2015).

Global Solution Reconstruction

The algorithm ends with a public solution ¢ which is an ex-
tensible public plan. To reconstruct a solution of the origi-
nal problem II, each agent « creates a classical STRIPS re-
construction problem II, which contains only internal ac-
tions of agent a. To problem II,, the generated public so-
lution o is added as action landmarks just like in method
AddLandmarks. The only difference is that hard action
landmarks are used to ensure that all the landmark actions
are executed. The public plan is a-extensible and thus prob-
lem I1,, is solvable. Agents then merge together solutions of
all the reconstruction problems and create a solution of the
original problem II.

PSM Planner Extensions

Basic PsM algorithm, where agents iteratively generate new
plans, exchange their public PSMs and check whether their
intersection is nonempty, can be extended to achieve better
results. In this section we describe three implemented exten-
sions. First extension, EXT-V, significantly reduces number
of misleading landmarks by use of plan verification. Second
extension, EXT-R computes a relaxed solution 7 and uses its
public projection 7 > * as initial landmarks. The last exten-
sion, EXT-D, allows agents to exchange some abstract rules
describing their internal knowledge.

http://www.fast-downward.org/
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EXT-V: Plan Verification and Analysis

PSM planner from Algorithm 1 uses public plans generated
by other agents as landmarks to guide future plan search.
However, it is desirable to use only extensible plans to guide
plan search because non-extensible plans can not lead to a
non-empty public PSMs intersection. Every generated plan
should be verified by other agents in order to determine
its extensibility. However, extensibility (or a-extensibility)
checking is expensive and thus we propose only an ap-
proximative method of plan verification. This extension of
a PSM planner has already been proposed with promising
results (Jakubiv, ToZi¢ka, and Komenda 2015).

In order to approximative a-extensibility we use generic
process calculi type system scheme POLY>* (Makholm and
Wells 2005; Jakubtv and Wells 2010) to determine the least
provably unreachable action in a public plan. The result of
PoOLY analysis is either indeterminate, or the index an ac-
tion which is guaranteed unreachable. However, some action
prior to the indexed action might be actually unreachable as
well because POLY> analysis provides only a polynomial
time approximation of a-extensibility.

Described a-extensibility approximation suggests the fol-
lowing implementation of method VerifyPlan (m,>*).
When agent « generates a new plan 7, it sends its public
projection 7, > * to all the other agents. Once other agent (3
receives 7, > *, it runs the above [-extensibility check on it,
and sends the result back to agent a. Agent « collects anal-
ysis results from all the other agents and strips the plan 7
to prefix acceptable for all agents. Finally only the stripped
plan is used as a landmark to guide future plan search. We
can even further speed up convergence of EXT-V by forbid-
ding all plans with public prefixes matching plans already
refused by other agents.

EXT-R: Initial Relaxed Plan Landmark

The delete effect relaxation, where delete effects of actions
are ignored, has proved its relevance both in STRIPS plan-
ning (Hoffmann and Nebel 2001), and recently also in MA-
STRIPS planning (Stolba and Komenda 2014). It is known
that to find a solution of a relaxed problem is an easier task
than to find a solution of the original problem.

Our algorithm first creates solution mr of the relaxed
problem and then transforms it into initial landmarks, which
are used by all the agents. When 7 >« is extensible then ev-
ery agent « is likely to generate local solution 7, such that
To>* = mR>* in the first iteration. In that case the algo-
rithm terminates directly in the first iteration causing a dra-
matic speed-up. Otherwise, the initial landmark is forgotten
by all the agents and the algorithm continues by the second
iteration as before.

Centralized EXT-R. Actions of all agents are relaxed and
merged into a single problem. One agent then solves this re-
laxed problem. In this implementation, every agent reveals
all its private information to the agent which computes the
relaxed solution.
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Distributed EXT-R. Agents compute distributed planning
graph by trying to fulfill goals or preconditions of reach-
able actions of other agents. In the case of domains where
actions model use of limited resources, it is better to find
solutions where each agent fulfill few of the goals, because
limiting resources are relaxed away. Therefore, during the
extraction of the relaxed plan from the distributed planning
graph, agents are lazy and try to fulfill only one goal and
they pass the remaining goals together with new subgoals to
another agent. More effective implementation would make
use of exploration queues (Stolba and Komenda 2014).

Distributed implementation of EXT-R respects privacy
by not revealing private information in the form of inter-
nal facts or actions to other agents.

EXT-D: Internal Dependencies of Public Actions

One of the benefits of planning with external actions is that
every agent can plan separately its local problem which in-
volves planning of actions for other agents (external ac-
tions). Other agents can then only verify whether a plan gen-
erated by another agent is a-extensible for them. A con of
this approach is that agents have only a limited knowledge
about external actions because internal facts are removed by
projection. Thus it can happen that agent « plans external ac-
tions inappropriately in a way that the resulting public plan
is not (-extensible for some other agent 5. A method to
overcome this con was introduced quite recently (ToZicka,
Jakubuiv, and Komenda 2015).

With EXT-D extension, agents are equipped by ex-
tended information about applicability of external actions
in the form of dependency graphs (Tozicka, Jakubtiv, and
Komenda 2015). The information encapsulated in a depen-
dency graph is equivalent to a set of conditions of the form
(a, S, F) meaning that action a must be preceded by some
action from S not followed by any action from F'. Agents
not capable of expressing dependencies of their public ac-
tions in the above way simply do not publish anything.

Information from dependency graphs is compiled into lo-
cal problems using additional facts. These additional facts
might resemble some internal facts of agents. However, in all
but the most trivial cases, published information is so con-
densed that original internal facts cannot be reconstructed.

Summary
We have submitted the following four PSM-based planners
to the CODMAP competition.
(1) Centralized PSM-VR (extensions EXT-V and EXT-R)
(2) Centralized PSM-VRD (EXT-v, EXT-R, and EXT-D)
(3) Distributed PSM-VR (extensions as (1))
(4) Distributed PSM-VRD (extensions as (2))

As noted in the introduction, all the planners are com-
plete but not optimal. All the planners use MA-STRIPS pri-
vacy classification and all the planners use agent factoriza-
tion from the input files.

In Distributed PSM-VR, no private information is explic-
itly reveled in the form of internal facts and actions. In Dis-
tributed PSM-VRD, a limited private information encoded in
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dependency graphs is revealed to other agents. Furthermore,
some additional private information might be implicitly re-
vealed by the way agents act and respond during planning,
plan verification, and relaxed planning graph construction.
In Centralized versions, all private information in the form
of all the internal facts and actions is revealed to other agents
for the reasons of problem grounding and relaxed planning
graph construction. Apart from this, centralized versions re-
spect privacy as the corresponding distributed versions.
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