Negotiating Parking Spaces in Smart Cities

Claudia Di Napoli
Istituto di Calcolo e Reti ad
Alte Prestazioni
C.N.R.

Naples - Italy
claudia.dinapoli@cnr.it

ABSTRACT

Parking in urban areas is becoming a big concern for its
environmental and economic implications. Smart parking
systems are considered essential to improve both city life in
terms of gas emission and air pollution, and motorists life by
making it easier to park. Supporting technologies are emerg-
ing at the industrial level to easily locate available parking
spaces, to automate parking payments, and to collect useful
data on consumer demand. Nevertheless, the full poten-
tiality of smart parking systems is still far to come, and it
represents a big challenge for the future of Smart Cities. In
this paper we propose to address the parking space alloca-
tion as the result of an agreement between parking providers
and parking requestors that accommodates their respective
requirements on some parking attributes. A software agent
negotiation mechanism is adopted to establish such an agree-
ment by taking into account user requirements on a park-
ing space in terms of its location and cost, and the vendor
requirements in terms of income and city regulations to ob-
tain an efficient parking allocation and traffic redirection.
It is shown that agent negotiation allows to allocate park-
ing spaces to users in an automatic and intelligent manner
by taking into account that a compromise among different
preferences of users and vendors have to be met.

Keywords

Agent negotiation, multi-agent systems, smart parking, smart
cities.

1. INTRODUCTION

Urban transportation is considered a relevant investiga-
tion area for the innovation of Smart Cities since it may
contribute to increase the quality of life of city-dwellers, to
enhance the efficiency and competitiveness of the city econ-
omy, and to move towards the sustainability of cities by im-
proving resource efficiency and meeting emission reduction
targets. The main themes addressed in urban transportation
are:

*Ph.D. scholarship funded by Media Motive S.r.l, POR
Campania FSE 2007-2013.

Dario Di Nocera*
Dipartimento di Matematica
University of Naples
“Federico II”, Napoli - ltaly
dario.dinocera@unina.it

Silvia Rossi
Dipartimento di Ingegneria
Elettrica e Tecnologie
dell'Informazione
University of Naples
“Federico II”, Napoli, Italy

silvia.rossi@unina.it

e Cooperative Intelligent Transport Systems and Ser-
vices (C-ITS), based on the principle that all coop-
erative parties (i.e. ITS stations, vehicles, road side
units) exchange information between each other, so
enabling up-to-date traffic information, improved road
safety and traffic efficiency.

e Enabling Seamless Multi-modality for End Users, based
on the possibility to combine public transport with
other motorized and non-motorized modes as well as
with new concepts of vehicle ownership.

e Smart Organization of Traffic Flows and Logistics that
involves multi-agency interaction, linking individual
mobility with public transport services.

In this framework, one of the problems linked to the above
themes, is parking in urban areas. It is widely recognized
that drivers searching for parking in wide urban areas waste
time and fuel, so increasing traffic congestion and air pol-
lution [11]. Most of the research projects concerning smart
parking systems focus on ways to collect and publish live
parking information to drivers so they can be informed of
available parking spaces near to the destination they require
[9]. Nevertheless, the fragmentation of public and private
parking providers, each one adopting their own technology
to collect occupancy data, makes it difficult to advise mo-
torists of available parking in multiple zones, but, more im-
portantly, to help them in making decisions on where to
park. Hence, smart parking applications should aim at co-
ordinating individual parking solutions, both private and
public, without involving end-users in the fragmentation of
parking owners. Individual parking owners should be made
aware of the benefits of such a global parking provision by
showing them that the coordinated provision of parking so-
lutions still guarantees their individual income and fair com-
petition by better exploiting the parking spaces offered in a
city.

In the present work, we investigate the possibility to use
software agent negotiation to manage the relationship be-
tween parking supply and demand to provide user-oriented
automatic parking services that take into account both driv-
ers preferences, and parking vendors requirements together
with social benefits for the city, such as a reduction of traffic
by limiting parking in city center [13]. We propose to use
software agents to model both a Parking Manager, who is
responsible for coordinating the offers of individual Parking
Owners (both public or private), and motorists who are end
users that search for parking spaces that meet their require-
ments. In particular, an automatic negotiation mechanism

Car Park
Server

}

User

W

Browser @

!

= 0)

Car Park Sensors g

GUULUL
Car Park

-— g
Internal

Parking ‘Web Services
Manager \

S

i @ Database
—l —
Route & .
. City
guidance External y
Manager

Agent Web Services

Figure 1: A Car Parking System.

is proposed to accommodate users and providers needs. Of
course, the length of negotiation could prevent its use in this
setting [5], so it should be adapted to the negotiation trend
that may vary because of the the attributes to be negotiated
upon, and the parking market situation.

2. A MODEL FOR A CITY PARKING SY-
STEM

Car Park Systems refer to a wide spectrum of parking
facilities including devices to automatically locate car parks
and to automate parking space payment.

In the present work, a Car Park System is intended as a
complex application composed of different devices and ser-
vices, that allows users to retrieve information on the avail-
able parking spaces in a city around a specific destination
area. A sketch of such a system is reported in Figure 1. As
shown, a user may submit a request for a parking space to
the Car Park Server through several devices (e.g. Tablet,
Smart-Phone, PDA or PC). The system provides the user
with a city map to select the area he/she would like to park,
and an interface to indicate his/her parking preferences. A
Parking Manager (PM) is responsible for processing the re-
quest. It queries an internal database (Database) to retrieve
information on the available car parks, and it relies on spe-
cific applications to extract car park availability at the mo-
ment the request is processed (e.g. through Car Park Sen-
sors). Also it may invoke additional services (External Web
Services) to collect information on city regulations and/or
events (provided under the responsibility of the City Man-
ager) relevant to find a parking space, or other salient in-
formation, such as an estimation of the time necessary to
arrive to the user destination from a specific car park, that
can be retrieved from external applications as Google Maps
API [10].

In such a framework, each car park is characterized by the

following parameters:

car_park= <park_id,park_GPS_location,ref_price_unit,

park_capacity, sector>

where park_id is the unique identifier of the car park, park_
GPS_location is its GPS location, ref_price_unit is the
default time unit price for a parking space, park_capacity
is the total number of parking spaces of the car park, and
sector represents the geographical location of the car park
with respect to the city center. In fact, in the proposed
application, the city is divided in several rings (referred to
as sectors) that account for the distance between the car
park and the city center, as shown in Figure 2. A sector is
represented by an integer value so calculated:

0 distance_from_city < min_range
sector = distance_from_cit .
1+ {logg(- f y)J otherwise
min_range

where min_range is the radius of the first area (sector=0),
and distance_from_city represents the distance between the
car park location and the city center (located in sector=0).

A user request (park_req) is composed of values referred
to the parking space attributes that are relevant for the user
to decide where to park.

park_req(t)= <id_req,dest_GPS_location, start_time,

end_time,reserv_time>

where id_req is the unique identifier of the user request,
dest_location represents the GPS location of the destina-
tion the user wants to reach, the time interval (end_time -
start_time) represents the duration the user wants to park
for, and reserv_time is a flag used to distinguish between
on-demand or advance requests. For the time being, only ad-
vance requests are considered since for on-demand requests
different assumptions on the evaluation of car park occu-
pancy should be considered.

With a static selection, the PM will select car parks con-
sidering only to meet the user requirements in terms of lo-

R/
¥ N
15862‘1,5.67382, 45239644 Oade

Figure 2: Sector distribution for the city of Naples.

cation, and available parking spaces for the required time
interval. If there is no parking space meeting the require-
ments, a static mechanism will end up with no solutions for
the driver request. A dynamic selection of parking spaces
implies the evaluation of criteria that may not be explicitly
expressed by the user, and that can influence the selection
of the parking spaces offered by the PM. Furthermore, users
may adopt private evaluation criteria that are specific to
their profile to evaluate if the received offer is acceptable or
not. With a dynamic selection, parking solutions that were
not found with a static selection, could be produced as an
acceptable compromise between PM and UA preferences.

3. NEGOTIATING OVER PARKING SPACE
ATTRIBUTES

In a smart parking application, motorists will be clas-
sified according to their different requirements on parking
spaces corresponding to different user’s profile (e.g. busi-
ness, tourist, generic). In fact, users may have different
preferences on the parking attributes, and their relative im-
portance (measured in terms of weights). Furthermore, addi-
tional information may be used (that could come from other
sources of information) to help refining the selection process,
e.g., unavailability of public transportation at the required
time, the necessity to reach different locations once the car
has been parked, the possibility to find other attractions in
the area, and so on.

In this work, we investigate the possibility to use software
agent negotiation to provide a user-oriented automatic park-
ing service that takes into account both drivers preferences,
and parking vendors requirements together with social ben-
efits for the city. In particular, we propose a negotiation
mechanism between two agents: the PM and a User Agent
(UA). The PM has the aim to improve the citizen life, and
city pollution by decreasing the influx of cars in the city cen-
ter, and, at the same time, to offer a better distribution of
vehicles in the managed car parks, still trying to obtain an
economic income. The UA has the aim to help a motorist
to select one of the parking solutions proposed by PM. Of
course, it is difficult for the negotiating agent to evaluate
whether to accept an offer to minimize the expected cost of

communication (at the risk of getting a sub-optimal result
for the specific application), or to keep on negotiating to
maximize its expected utility (at the risk of increasing the
cost of negotiation and ending with a conflict deal). Usu-
ally this lead to the specification of an acceptance condition
that is not only based on utility, but on more complex cri-
teria (i.e., based on utility and time) [2].

The adopted negotiation model is based on the one pro-
posed in [6] that was shown to be a viable approach to ad-
dress the problem of service selection for Service Based Ap-
plications characterized by Quality of Services values that
once aggregated should meet user’s preferences. The pro-
posed mechanism allows to implement a flexible negotiation
in terms of its length. In fact, the negotiation proceeds in
rounds, and the number of round is not statically set, but its
value may be changed by the PM or by the UA according to
the trend of the negotiation process. A concession strategy
is used at each negotiation round by the PM to make offers,
and both negotiators may decide to end negotiation accord-
ing to the negotiation evolution, so the negotiation deadline
(i.e. the number of allowed rounds) is not fixed a priori.

3.1 A one-sided negotiation model

Usually negotiation takes place between two agents x and
y willing to come to an agreement on conflicting interests,
by exchanging an alternate succession of offers and coun-
teroffers in a bilateral interaction [8].

In the present work we adopt the negotiation mechanism
reported in [6], whose protocol is based on the Iterated Con-
tract Net Protocol, that is frequently used to mime the hu-
man contract negotiation process [4]. Contract net protocol
is a market-like mechanism allowing involved parties to ex-
change information in a distributed system, such as a multi-
agent one.

As described in Figure 3, the protocol is organized in ne-
gotiation rounds, each one consisting of interactions between
the UA, that is the initiator of the negotiation, and the PM,
that is the agent proposing offers. Negotiation rounds may
be iterated for a variable number of times until a deadline is
reached or the negotiation is successful. Moreover, both the
UA and the PM can stop the negotiation process. At each

Parking
Manager

Accept proposal

T Cfp
|
|
|:::|<7Reject cfp—————
|
| -
I - f
I
|
I
| |
< Proposal }
I
|
Reject prnrrmeal 'Li_‘
I
Not final |
Round Cip A
I
T I
[|
| Final Reject proposa
} Round Fail
I
: R — |
I I
' |
| I
|
l

D‘—Infon'n

Figure 3: The iterated negotiation protocol.

negotiation round, the UA issues a request for a parking
space (cfp) specifying its preferred values for the parking
attributes; the PM can either reject the call (Reject cfp),
if there are not offers available, or it sends back a parking
solution (Proposal) selected from a set of available offers it
calculated according to the preferences specified in the cfp
and its own preference criteria. In the latter case, the UA
evaluates the received offer, according to its own evaluation
criteria, to decide whether to accept (Accept proposal) or
to reject it (Reject proposal). If the offer is accepted the
negotiation ends with an Inform message assigning the se-
lected car space to the UA, otherwise a new round starts
with the UA sending again the same cfp request. It should
be noted that an offer proposed by the PM in a negotiation
round is not considered available in future rounds once it
is rejected. This assumption models the possibility that a
rejected parking space may be offered to another user in the
meantime, or its price may change according to the parking
market trends.

Both PM and UA preferences over the attributes to be ne-
gotiated upon, are modeled through utility functions based
on the Multi-Attribute Utility Theory defined on indepen-
dent issues [3]. The function domain represents the negotia-
tion space, and it is normalized to the interval [0, 1]. So, the
utility function of an agent z for an offer o, sent by the agent
y (with z =y or x # y) is Uy(0y) : D1 X --- x D" — [0, 1],
where D1, ..., D, are the value domains of the r negotiation
issues. The utility function allows to evaluate the value of

each specific offer in terms of agent utility with respect to
that offer.

In our model, the utility function of the PM depends on
the car park availability at the moment the request is re-
ceived, and on the distance of the car park from the city
center, while the utility function of the UA depends on the
parking space price, and on its distance from the requested
destination. Different weights of the different issues may
model different classes of UAs and PMs. In this way, the is-
sues considered in the PM utility function take into account
the preference of the PM to propose first car parks that are
both less occupied and not located in the city center (to re-
duce the influx of cars in city centers). The issues considered
in the UA utility function take into account the preference of
the UA concerning the parking space price, and its location
with respect to the preferred final destination. Utility func-
tions are modeled as linear functions (as it will be explained
in the following sections) resulting from the weighted sum
of the considered issues.

The negotiation occurring between the PM and the UA
is defined as a one-sided negotiation since it allows only the
PM to formulate offers, according its own utility function,
and the UA only to evaluate them, according its own utility
function as well. The rationale of this choice is to model
the assumption that UAs do not have complete information
on parking spaces availability, otherwise they would simply
choose the offer more convenient for them without reaching
a compromise also with the preferences of the PM. So, at

each round the PM sends only one offer (or equivalently a
finite set of offers) selected according to a strategy allowing
to take into account the requirements of both negotiators.

3.2 Parking Manager Behavior

At the first round of negotiation, the PM computes the
set of possible offers corresponding to a set of car parks that
meet the following requirements:

e the distance (referred to as park_GPS_distance) of the
car park location (park_GPS_location) from the desti-
nation (dest_GPS_location) set by the user, is within
a given distance (location_tolerance);

e the car park have spaces available for the time interval
specified by the user at the time t the request is issued
(end_time - start_time).

The location_tolerance is set by the PM in such a way
to include also car parks that are not in the city center, and
consequently they may be far from the dest_GPS_location
specified by the user, since the PM tries to prevent users
from parking in the city center and to maximize the occu-
pancy of car parks.

An offer of the PM for a parking space of a selected car
park is:

offer (k) = < park_id, park_GPS_distance,

dest_time_distance, park_price_unit >

where park_id is the identifier of the selected car park,
park_GPS_distance is the distance between park_GPS_lo-
cation and dest_GPS_location, dest_time_distance is the
time necessary to travel from park_GPS_location to the
dest_GPS_location using public transportation, and park_
price_unit is the unit price offered for the selected park-
ing space. The dest_time_distance value is obtained by
invoking external services, such as Google Maps, but also
also other city services giving additional information such
as events preventing the use of public transport at the time
of the request.

In order to incentivize users to park outside the city cen-
ter and in car parks with more parking spaces available, the
park unit price for a parking space is dynamically computed
by considering that car parks located in the city center are
more expensive (according to the ring distribution reported
in Figure 1), and that car parks are offered with a discount
factor that depends on the car park occupancy. Hence, the
park_price_unit for a selected car park is computed as fol-
lows:

sector
+

park_price_unit = max_price({l - ——M
max_sector + 1

park_availability

: Ud
park_capacity

where max_price is the maximum time unit price for the
city center car parks, max_sector is the maximum number
of sectors in the city, park_availability is the number of
parking spaces available for the time interval requested by
the UA (end_time - start_time), park_capacity is the to-
tal number of parking spaces, and uq is the maximum dis-
count for the PM on the car parks (with uq < max_price).
In this way, the price offered by the PM is not the static de-
fault price associated to the car park (i.e. ref_unit_price),

but a dynamic value. The park_availability value is re-
trieved through a specific service invoked by the PM at the
time the request is processed.

Once the PM computes the set of possible offers, it needs
to establish which one to offer at each negotiation round, i.e.
it needs to establish its concession strategy during negotia-
tion. In order to do so, the PM uses a private utility function
to rank the selected car parks. The evaluation function used
by the PM to compute the utility of an offer (of ferpas(k))
is the following:

n

Upa(of ferpar(k)) =D (ai =

=1

@i,k — min;(gi,;)
max;(gs,;) — min;(g;,;)

where n is the number of issues the agent is evaluating, g; i is
the value of the i-th issue of the k-th car park, and min;(g¢;,;)
and max;(q;,;) are respectively the minimum and the maxi-
mum values of the i-th issue among all the car parks selected
by the PM. The constants a; are weights associated to dif-
ferent issues with the constraint that:

io&i =1
i=1

The issues for the PM are the distance of the car park from
the city center, and the availability of parking spaces in the
car park for the requested time interval, i.e.:

e ¢1 = dist(park_GPS_location, center_GPS_location)
e ¢> = park_availability

Through its utility function, the PM ranks the offers for
the selected car parks in a utility descending order (total or
partial). At each negotiation round, it sends the UA one
offer according this order, so adopting a concession strategy
with a monotonically decreasing value of utility.

3.3 User Agent Behavior

The UA evaluates the offer it receives at each round to
decide whether to accept or to reject it. In order to do so,
it calculates its utility value for that specific offer, using the
following utility function:

m
i,k — Ci
UUA(Offe’r‘PM(k‘)) 1 ;62 * —
where m is the number of issues the agent is evaluating, ¢;
the value i-th issue of the k-th offer, ¢; is the preferred value
over the i-th issue, and h; is a constant value introduced for
normalizing each term of the formula into the set [0,1]. The
constants [3; are weights associates to different issues with
the constraint that:

Zﬁi =1
i=1

m .
If gix — ¢; < O than the term Y 3; * Z:E="% s set to zero.
i=1 v

Moreover, we assume that the preferred c¢; values are not
unreasonable with respect to each considered issue (i.e. user
cannot ask for a parking space in a city center for free!).

The issues considered by the UA are the offered price, the
distance of the offered car park from the requested location,
and the travel time distance to the offered car park from the
requested location with public transportation:

% Va &’ W .S

| 1D: 2207479609 || & . | ID: 2207411528
Utility: 0.17 . (P o Utility: 0.13 I

- | ID: 2245281149

‘2

C\\\\

) A NT(¥

ID: 2204658556 |
Utility: 0.37

Utility: 0.32

ID: 2245281153
Utility: 0.09 [ow™

Ive | Selected 5 Cieo.
be & = . ID: 2239471042
§ / \3 o % « Utility: 0.07
o
< | ID: 1495201878 -y
- EI‘/ Utility: 0.34 foridana
& i 0 Vitorio |
ID: 2204657189 i) ral{
Utility: 0.54 N P parc 7o)
oy ID: 417856728 g PENS
i = ID: 2204657190] e & .
b Utility: 0.63 Utility: 0.82 froro €
. \Y = e

(a) Parking Manager utilities.

R\\\ e

) Ne

lD 2204658556 |
Utility: 0.65
| Selected

sl A"

VR Areto Fagprg

ID: 2204657189 [<.

Utility: 0.15) \
ID: 417856728 3
ID: 2204657190 2|
. T i
b Utility: 0.55 .| Utility: 033 :

(b) User Agent utilities.

Figure 4: Parking Manager and User Agent Utilities.

® ¢ = park_price_unit
e g> = park_GPS_distance
® g3 = park_time_distance

The UA accepts the offer if the utility value for that offer
is greater then a predefined threshold value. This threshold
may be set to different values to model different UA profiles.

4. A FIRST EXPERIMENTATION ON A
REAL SETTING

A preliminary set of experiments was carried out to de-
termine whether negotiation is a viable approach in order to
meet both users and parking managers requirements.

In this experimentation the weights in the utility functions
are equally distributed among issues (i.e., a; = 0,5 and
Bi = 0,33 for all i), while for each issue 4, h; and ¢; are
dynamically set to respectively maz;(gi, ;) and mean; (g ;)
(i.e., the maximum and the mean value for the current issue).
The UA accepts an offer if its utility for that offer is greater
than a threshold value set to 0.6 for all the experiments.

4.1 Utility Evaluation in a Running Example

A running example of a real negotiation, where we eval-
uate the utility obtained by the PM and the UA when an
agreement is achieved, is reported.

The experiment starts with a request issued by a hy-
pothetical user specifying the destination he/she wants to
reach, selected on interactive city map provided by a spe-
cific service, and the time interval he/she wants to park for.
As described in Section 2, the UA sends a park_req (i.e.,
a call for parking) to the PM. A graphical representation
of the use case described above is reported in the Figure 4,
where the destination selected by the user is identified with
the down arrow.

At the first round, the PM selects a list of car parks
around the user’s destination (as shown in Figure 4(a)), and
it calculates the ranking of the selected car parks based
on its utility according to the function reported in Sec-
tion 3.2. The PM found ten car parks with parking spaces

available in the requested area within a predefined loca-
tion_tolerance. Parking identifiers and locations are ex-
tracted from the OpenStreetMap database [7] of the city of
Naples (Italy), while routing information (dest_GPS_distan-
ce and dest_time_ distance) are evaluated through the use
of Google MAPs API [12]. The occupancy of car parks is
randomly generated for each negotiation run. In the Figure
4(a), the selected car parks are reported with labels speci-
fying the corresponding park ids and their utility values, as
evaluated by the PM.

At each negotiation round, the PM offers to the UA the
parking space with the highest utility value (in this example
it offer a car park with utility equals to 0.82). The UA ac-
cepts (rejects) the offer if its utility for that offer, evaluated
according to the formula described in Section 3.3, is higher
(lower) than the threshold value. The first PM offer corre-
sponds to an utility for the UA equals to 0.33. Hence, the
offer is rejected because it is lower than the threshold value
(equals to 0.6), and the UA starts another round of negoti-
ation. The negotiation ends at the fourth round, when the
UA accepts an offer with utility equals to 0.66 (correspond-
ing to an utility for the PM equals to 0.37). In the Figure
4(b), car parks offered by the PM during negotiation are
reported with labels specifying the corresponding park ids
and their utility values, as evaluated by the UA.

In Table 1 we summarized all the relevant information
at each negotiation round, reporting the number of parking
spaces available in a car park (# Spaces), its distance from
the city center (Distance), the unit price (Price) to be paid
for the parking space, and the distance of the car park from
the destination set by the UA, calculated both in length
and in time (Route and Time), as obtained by querying a
service of Google Maps. This information is necessary to
allow the PM and the UA to calculate their utility values
for the car parks, according to the utility functions reported
respectively in 3.2 and 3.3. In this specific run, the negotia-
tion ends after four rounds with an utility of the PM equals
to 0.37 and for the UA equals to 0.66. Note that while the
utility of the PM is not particularly high (because of the
few parking spaces available in the car parks), the PM still
manages to allocate a parking space in only four rounds of

| # Rounds | 1D | # Spaces | Distance (m) | Price (€) [Route (m) [Time (s) [PM Utility [UA Utility |
1° 417856728 109 3187 7.99 1516 1384 0.82 0.34
2° 2204657189 41 4036 5.61 1818 2183 0.63 0.16
3° 2204657190 41 3594 7.98 1192 871 0.54 0.55
4° 2204658556 18 3359 7.46 891 646 0.37 0.66

Table 1: Negotiation on a single query.

negotiation, being able to reach a compromise by offering
a car park that is not the closest to the user’s destination,
but still acceptable by the user in terms of time necessary to
reach the destination from the car park location, and that
is not too close to the city center.

4.2 1 vs N Rounds of Negotiation

Another experimentation was carried out on a simulation
of 150 different queries made by users. The destinations
selected by the user are located in sectors two and three
on the city map. For each query a negotiation run takes
place. The experimental results are summarized in Table 2
for successful negotiations. In particular, the table reports,
for each negotiation run, the minimum, the maximum and
the mean value (with the standard deviation) of the number
of selected car parks (# Available car parks), the number of
negotiation rounds (# Rounds), the PM and the UA utility.

The mean value of rounds (that is the mean number of
offers sent by the PM) is much lower that the mean number
of car parks selected by PM for the experiments (3.3 rounds
with respect to 11 available car parks). This means that the
negotiation ends before the PM offers all the selected car
parks.

The obtained mean utilities values for the UA and PM
are reported in rows 3 and 4 of Table 2, showing that a
compromise on the requirements of both parties is reached.
In fact, without negotiation (i.e., in the case the complete
set of offers selected by the PM is known to the UA as well),
the UA would select the offer that maximizes its own utility.
The PM and the UA mean value utilities without negotiation
are reported in the last two rows of Table 2. As expected, in
this way, the UA requirements are privileged (UA achieves
a mean utility value equals to 0.71) with respect to the PM
ones (PM achieves a mean utility value equals to 0.35).

S. DISCUSSION AND CONCLUSIONS

Parking in populated urban areas is becoming a challeng-
ing problem requiring smart technologies in order to assist
users in finding parking solutions, and to shorten the time
necessary to find parking spaces. In this way, it is possible
to decrease traffic congestion, and to improve the everyday
life of city dwellers.

In the present work, we investigated the possibility to use
software agent negotiation to address the parking problem
by taking into account not only motorists’ preferences re-
garding parking locations, but also parking vendors prefer-
ences regarding car park occupancy, and social city benefits
(e.g. less traffic congestion in city centers). Multi-agent
negotiation was already used in Intelligent Transportation
System applications, such as [1, 4]. In particular, in [1] co-
operative agent negotiation is used to optimize traffic man-
agement relying on shared knowledge between drivers and
network operators about routing preferences. In [4] agent

negotiation is used for dynamic parking allocation, focusing
on satisfying driver’s preferences on prices and distances.

Here we use a flexible negotiation mechanism to find park-
ing solutions that represent a compromise among different
needs: a user who prefers to park close to the city center,
the car park vendors who prefer to sell parking spaces in less
occupied car parks, and a city manager who tries to limit
the circulation of cars in city centers. At this purpose, a Car
Park System is proposed in order to provide a coordinated
selling of parking spaces belonging to different car parks,
managed by a single software entity, the Parking Manager
agent. We show that an automated negotiation mechanism
between the Parking Manager and motorists represented by
User Agents, allows to find a compromise solution for the in-
volved negotiators, through the use of utility functions that
model different needs that have to be dynamically evalu-
ated, so helping users in their decision making process. The
automated negotiation mechanism allows to formulate offers
that do not strictly meet the user requirements, and to find
parking solutions that are a result of a negotiation process
between the PM and the UA upon parking attributes that
are evaluated differently by the negotiators.

In principle, the proposed framework allows also to model
different user’s profiles since the evaluation of the parking
space attribute values may vary for different classes of users.
Furthermore, different UAs and different PMs may adopt
different evaluation criteria respectively to reject/accept and
to select offers that can be based on dynamic parameters,
e.g. as the occupancy of the car park at the requested
time, or the unavailability of public transportation at the
requested time.

Finally, we showed that negotiation is a viable and promis-
ing approach since a solution that is found before all selected
car parks are proposed to users, i.e. before they reach com-
plete information on the parking spaces available offers, and
that does not privilege only the drivers’ preferences.

In order to better assess the usability of negotiation in
real parking settings, a further experimentation is planned
to evaluate the length of the negotiation process when the
number of car parks increases and their occupancy distribu-
tion varies because of multiple users’ requests. Also, more
experimental settings have to be designed with different val-
ues of the UA threshold, modeling the user’s “attitude” to
reach an agreement, to evaluate their impact on the negoti-
ation length.

Acknowledgements

The research leading to these results has received funding
from the EU FP7-ICT-2012-8 under the MIDAS Project
(Model and Inference Driven - Automated testing of Services
architectures), Grant Agreement no. 318786, and the Ital-
ian Ministry of University and Research and EU under the
PON OR.C.HE.S.T.R.A. project (ORganization of Cultural

[| max_value [min_value [mean_value |

Available car parks 14 10 11+£2
Rounds 9 1 3.3+£25
PM Utility 0.97 0.03 0.62 £ 0.22
UA Utility 0.75 0.10 0.68 £ 0.06
PM Utility 1 Round Neg 0.35+£0.27
UA Utility 1 Round Neg 0.71 +0.04

Table 2: Experimental Data collected in 150 runs.

HEritage for Smart Tourism and Real-time Accessibility).

6.
1]

[10]

REFERENCES

J. L. Adler and V. J. Blue. A cooperative multi-agent
transportation management and route guidance
system. Transportation Research Part C: Emerging
Technologies, 10(54A86):433 — 454, 2002.

T. Baarslag, K. Hindriks, and C. Jonker. Acceptance
conditions in automated negotiation. In T. Ito,

M. Zhang, V. Robu, and T. Matsuo, editors, Complex
Automated Negotiations: Theories, Models, and
Software Competitions, volume 435 of Studies in
Computational Intelligence, pages 95—111. Springer
Berlin Heidelberg, 2013.

M. Barbuceanu and W.-K. Lo. Multi-attribute utility
theoretic negotiation for electronic commerce. In
Agent-Mediated Electronic Commerce III, Current
Issues in Agent-Based Electronic Commerce Systems,
pages 15-30. Springer-Verlag, 2001.

S.-Y. Chou, S.-W. Lin, and C.-C. Li. Dynamic parking
negotiation and guidance using an agent-based
platform. Ezpert Syst. Appl., 35(3):805-817, Oct. 2008.
C. Di Napoli, D. Di Nocera, and S. Rossi. Evaluating
negotiation cost for qos-aware service composition. In
Proceedings of the 14th Workshop “From Objects to
Agents” co-located with the 13th Conference of the
Ttalian Association for Artificial Intelligence (AI*IA
2013), volume 1099 of WOA ’18, pages 54-59. CEUR
workshop proceedings, 2013.

C. Di Napoli, P. Pisa, and S. Rossi. Towards a
dynamic negotiation mechanism for qos-aware service
markets. In Trends in Practical Applications of Agents
and Multiagent Systems, volume 221 of Advances in
Intelligent Systems and Computing, pages 9—16.
Springer International Publishing, 2013.

M. Haklay and P. Weber. Openstreetmap:
User-generated street maps. Pervasive Computing,
IEEE, 7(4):12-18, 2008.

N. R. Jennings, P. Faratin, A. R. Lomuscio,

S. Parsons, C. Sierra, and M. Wooldridge. Automated
negotiation: prospects, methods and challenges. Int.
Journal of Group Decision and Negotiation,
10(2):199-215, 2001.

K. Nakamura, I. Hondo, N. Hataoka, and S. Horii. Car
information systems for its. Hitachi Review,
49(3):102-106, 2000.

B. Pan, J. Crotts, and B. Muller. Developing
web-based tourist information tools using google map.
In M. Sigala, L. Mich, and J. Murphy, editors,

(11]

(12]

(13]

Information and Communication Technologies in
Tourism 2007, pages 503-512. Springer Vienna, 2007.
E. Polycarpou, L. Lambrinos, and E. Protopapadakis.
Smart parking solutions for urban areas. In 2013
IEEFE 14th International Symposium and Workshops
on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM), pages 1-6, 2013.

G. Svennerberg. Beginning Google Maps API 3.
Apress, 2010.

D. Teodorovi¢ and P. Luci¢. Intelligent parking
systems. European Journal of Operational Research,
175(3):1666-1681, 2006.

