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ABSTRACT
Smart and social mobility services will soon hit the streets
of our cities. However, most of existing solutions so far are
built through different operations that don’t lie on the same
processing flow, neither don’t share with each others their
input data streams. The understanding of how to design
a general-purpose framework, supporting a variety of inte-
grated services and promoting direct users involvement, is
still missing. In this paper, we first show our conceptual vi-
sion of smart mobility services, focusing on the cooperation
and interoperability of the actors involved. We then analyze
the infrastructural requirements to enable such smart mo-
bility services and present the characteristics of a general-
purpose framework for the provisioning of smart mobility
services, conceived as a distributed and open agent coordi-
nation infrastructure. To exemplify, we show how the frame-
work can be applied in the context of an urban ride-sharing
service.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Coherence and coordina-
tion, Multiagent systems

General Terms
Algorithms, Design

Keywords
Socio-technical System, Pervasive Computing, Smart Mobil-
ity Services, Agents Coordination, Ride-sharing

1. INTRODUCTION
The dramatic progress in embedded and mobile comput-

ing technologies, smart phones in primes, along with the
pervasive diffusion of social networking tools, let us envision
the emergence of a dense networked ICT infrastructure. In
such infrastructure, coordinated human agents (i.e., the cit-
izens) and software/hardware agents will interact with each
other in such infrastructure so as to serve – at the same time
– individual-level and urban-level goals, as if they were part
of a single socio-technical system.

The overall behavior of such system will be driven by a
variety of urban services which aim to improve the overall
quality of life of individuals by providing them with tools
to better interact with the urban environment, and also by
shaping the activities of the urban environment itself, to suit
their own needs.

One can consider a completely distributed software archi-
tecture deployed over individuals on their smart phones and
over hardware sensors and actuators. However, a central-
ized entity able to continuously monitoring and redirecting
the behavior of the agents will facilitate the dealing with
city-scale problems.

The future pervasive urban services will be supported
by bringing at work together the complementary sensing,
computing, and actuating capabilities of the interconnected
agents, and by closing them in a feedback loop (see Figure
1). After an initial learning phase in which raw data from
sensors are collected, processed and classified, the agents will
be skilled with context inference and anticipatory comput-
ing capabilities, as examples, and they will suggest tailored
recommendations to the hardware actuators and to them-
selves. Closing these capabilities in a loop lets measure the
goodness and the adoption rate of the suggested recommen-
dations, by making clear their causal relation with the ef-
fects they generate. The process results in the generation
of awareness, which can describe both individual and collec-
tive characters, related respectively to single agents and to
a collection of those [3].

Figure 1: The sensing-understanding-acting feed-
back loop enabled by agents coordination.



This work focuses on smart mobility services enabled through
the sensing-understanding-acting activities of the agents in
the improvement of urban mobility. That is, to increase the
effectiveness of individual mobility while at the same time
improving the overall urban mobility (see Figure 2).

Human agents will play a fundamental role in the de-
ployment of mobility services, since they can act both as
consumers and as providers (e.g., via their private cars or
simply by supplying information) of the services. Human
social interactions can be pushed through a precise dynamic
orchestration of the enabled data streams coming from both
humans and ICT devices.

Our contributions are grounded on presenting how, in the
scenario introduced above, the provisioning of integrated
smart mobility services, can be effectively realized by a specif-
ically suited coordination framework. Such coordination
framework will be proposed as capable of supporting the
iterative closed process of:

• Detecting mobility events related to the moving agents
on the infrastructure, by harnessing the surrounding
portion of the mobility data network shaped by the
infrastructure itself, and also by processing the stream
of incoming requests for mobility services;

• Identifying the possible solutions to satisfy expressed
mobility needs based on the current state of things and
of requests; anticipate future situations and future (or
latent) mobility needs;

• Putting in act the necessary actions on actuator agents,
or persuade human to act in certain ways, so as to end
up realizing a coherent and sustainable set of services
to satisfy the recognized needs.

Figure 2: Smart mobility services enabled by agents
coordination.

We believe, a general-purpose coordination framework that
supports the shaping and the provisioning of smart mobil-
ity services will represent a powerful tool for urban design-
ers and city administrators to make urban mobility services
more efficient in terms of cost of the infrastructure (by har-
nessing the same sensors and actuators that self-reconfigure
themselves upon specific requests, as well the same software
architecture) and amount of data collected and processed

(by sharing them among services with different purposes,
instead of replicating similar operations for each service).
Furthermore the provisioning of integrated solutions for dif-
ferent mobility needs can increase their individual adoption
rate, towards the aim of reaching a critical mass of users,
and thus can increase their effectiveness.

The contributions of this paper are to introduce our con-
ceptual vision of what smart mobility services can be (Sec-
tion 2), identify a set of infrastructural requirements for a
general-purpose agent coordination framework (Section 3),
sketch a conceptual model of the coordination framework
for smart mobility services (Section 4), and introduce a use
case in the area of ride-sharing (Section 5).

The paper also shortly discusses related works (Section 6)
before concluding (Section 7).

2. SMART MOBILITY SERVICES

2.1 From ITS to smart mobility services
The recent dramatic progresses in ICT technologies, have

led to the emergence of a very broad area of research in
Intelligent Transportation Systems (ITS). ITS, in general,
represent the most advanced way to establish a real-time
transportation management, and consists in harnessing ICT
technologies to better address users mobility needs and to
support urban authorities decisions [1, 29].

ITS aim to improve urban transport performance, and
can address in turns the problems and issues of pedestrians,
cyclists, private vehicles, public transports, and roadside in-
frastructures. However, the application of ITS is often lim-
ited to the provisioning of on-demand web-services, with lit-
tle or no interactions between users and contributions from
user themselves. Furthermore, ITS do not offer a unified
and integrated approach to support urban mobility in all
its aspect, and often they own independent approaches for
different mobility needs.

In general, the shift from ITS to smart mobility services
must pursue the desired comfort for citizens and the satis-
faction for urban authorities at the same level, by improving
traffic efficiency and road capacity on the transportation net-
work at an integrated, global, level. The services focus to
impact on the development of increased social participation
of citizens, where they are no longer simply requestors of
mobility services, but can in turn play a role in the provi-
sioning of services. Such an endeavor can feed cooperation
and sharing practices with incentives and regulations.

Smart mobility services consist of all the mobility solu-
tions enabled by pulling data from the available set of agents,
generating higher information out of them, and enabling
potential social interactions between a set of agents. The
utility information is returned to them in such a way as to
reinforce their interaction.

Citizens with mobility needs receive recommendations built
on the matches with the services provided by other citizens,
thanks to the supporting ICT infrastructure. Such recom-
mendations can be strengthen if users have a similar profile,
especially in terms of collaborative behavior. Data from
social networks can detect social communities with same in-
terests and mobility habits [5, 33]. The system will monitor
the eventual adoption of the recommendation, and its effec-
tiveness (was the service actually available?). Finally, it will
update the profiles of the involved agents, to provide more
useful recommendations in the future.



2.2 Example of smart mobility services
Let us now see some examples of such smart mobility ser-

vices:

• Parking Match. A driver is approaching her desti-
nation and tries to find a vacant parking space. Some
time earlier, another driver has left a parking lot in the
same area. A parking match takes place and the driver
is reached by a parking recommendation. Data in-
volved in the matching process can come directly from
the users involved, from the parking sensors installed
on the infrastructure, or on users vehicles [22, 21].

• Itinerary Match. Consider the concurrent presence
of the same users in a given set of locations at different
times. When a spatio-temporal analysis on the data re-
veals that such co-location happens regularly (as seen
in [8, 16]), it identifies a possible pool of commuters
that make similar trips. The system should persuade
them to switch to carpooling, making them aware of
the benefits they have. Available carpooling services
show how struggling is to reach a critical mass, hence
social incentives are crucial (some carpooling issues are
presented here [14]).

• Taxi Match. A taxi is hailed on the street by a per-
son. While the driver is moving towards client’s desti-
nation, he shares his route with other people that are
looking for a ride (as described here [20]). If someone
with a compatible trip ask for a ride, then taxi ser-
vice becomes shared. Thus, its cost is lower for the
clients and the revenue increase for the taxi driver.
This service could seem similar to the previous one,
but it mainly differs in terms of how the matches take
place. The Itinerary Match mainly evaluates historical
trips and habits, the latter considers real-time data.

• Multimodal Rides Match. A person explicitly de-
clares a destination from her starting location, asking
for directions. A selection of a spatio-temporal por-
tion of data streams occurs. Multimodal directions can
be provided to reach that destination. Current traf-
fic level and rides availability (from multiple means of
transports) on the transport network is evaluated and
several complex pattern matching mechanisms are put
in place to shape the best multimodal way to reach
the destination. Several approaches come from Oper-
ational Research [10, 4]. In [9], authors have consid-
ered ride-sharing as a complementary solution to usual
means of transports in multimodal trip planning.

• Chaperone Match. Parents cannot bring their chil-
dren to school every morning and they might find dif-
ficult to bring them back home when classes are over
as well. When no other relatives or friends can look
after a child, one can consider to share the path the
child is going to follow, at a certain time, to look for
someone that takes charge of assessing the presence of
the child at intermediate checkpoints (e.g., a bus stop,
a crossing, a public display, a store). Hardware sensors
and reliable citizens located close the checkpoints can
act as proximity probes and thus they can send actual
feedback in real-time to the parents, and of course they
send alerts when an unexpected event will occur.

The above examples in any case see a clear distinction
between provider and requestor of a service, and consider
that providers of a service are not influenced by the request.
However, in a really integrated system, the mean to provide
a service can be dynamically shaped upon the request, in a
process of mutual influence. Indeed, those who provide a ser-
vice is because they have a need to satisfy. It is thus possible
to let the distinction between requestor and provider van-
ish, and dynamically adapt the shape of services depending
on the need, also with some supra level objectives in mind
behind the opportunistic self-interest of the involved parties.

3. INFRASTRUCTURAL REQUIREMENTS
Next generation smart mobility services should be pur-

sued by settling some infrastructural requirements on its
components. These requirements can determine the tech-
nical viability of smart mobility services deployment.

Interconnection. Based on the Internet of Things paradigm
[2], the agents that populate the urban environment need to
be connected and able to exchange messages each others.
The distributed network of humans and ICT-devices will
enable sensing, computing, and actuating capabilities only
if information can flow seamlessly among a defined set of
entities, despite network dynamics, and made ephemeral.

Heterogeneity. The inter-connected components of the
ICT infrastructure are highly heterogeneous. This feature
has not to be considered its weakness. We have to take
advantage of their complementary role in knowledge mining.
As example, one can consider a fixed entity on the roadside
acting as a traffic sensor (e.g.: smart traffic light, CCTV
camera). The data collected can be enriched with the one
provided by mobile agents (e.g.: pedestrian, cars, buses),
and hence its interpretation is made easier. Events detection
and anticipation accuracy can improve as well.

Interoperability. Interoperable agents encourage com-
bination of concurrent data streams from different locations,
enabled in precise spatio-temporal patterns. Our coordina-
tion framework is based on the orchestration of such different
data sources, dynamically selected due their complementary
role, according to the incoming requests. Nevertheless, en-
ergy saving and classification accuracy should imply specific
conditions that drive the concurrent activation of certain
data sources and classifiers as well.

Individual tasks. Each agent has to share her knowledge
among a collection of agents that provides complementary
skills to her ones, in order to (i) ”measure” the context of
the surrounding environment, (ii) infer a certain situation,
so become aware that is happening something relevant, (iii)
and finally adapt the behavior of the actuators accordingly.
Human actions and interactions are crucial during the whole
process, and they can be tracked by explicit or implicit sens-
ing of data through both personal devices like smart phones
or smart vehicles, and through public interactive displays.

Collective intelligence. The brain of the system needs
a software architecture designed by balancing a top-down
and a bottom-up approach. The first usually results in very
predictable and measurable systems that lack in reactivity
in high dynamic contexts. The latter suits to cope with per-
vasive computing in decentralized systems, which their be-
havior is not always predictable, nor easy to be engineered.
Collective intelligence can emerge from the reasoning and
the collaborations among decentralized agents that aim to
process individual and collective contents.



System safety. The system should own only a finite set
of reachable states, which should be known in the design
phase, and tested during the development. The aim here,
is to avoid risks related to the eventual system’s evolution
towards uncontrolled situations. To enable this feature we
need to own a deep understanding of system dynamics, and
how to deal with them. In other worlds, citizens should feel
safe to contribute in social collective intelligence initiatives,
because they trust the system and its potentials, and find it
useful in any circumstance.

Information propagation. The inferred information
should pervade the nodes of the infrastructure till it can ac-
tually reach any potential agent that can be interested in
it. Data should be packed in efficient structures, and routed
via peer exchanges. A middleware architecture can be har-
nessed to reach these goals, and thus to support the purpose
of the coordination framework, which is expected to become
active supporter of agents interactions and facilitator of in-
formation propagation [7].

Data management. Big amount of spatio-temporally
distributed and heterogeneous data will be concurrently eval-
uated by computing-enabled devices, at different stages. Thus,
efficient storage, querying, and analysis practices are needed.
Academic literature offers as many cues as many approaches
it presents ([23], and [19] among the others), but a unified
best practice is missing.

Users privacy. Discovering matches between needs and
services implies computation on sensitive data coming from
the set of agents. This task can contemplate the sharing
of confidential information among them. Privacy concerns
and sharing policies must be dealt on user agreements and
should consider innovative practices to balance the value of
the data shared with the value expressed by service enabled
through the sharing of someone else [13]. One should be
able to opt-out from collecting certain data once they could
evaluate the purpose of that collection, the sharing rules,
and the service(s) that could be enabled thanks to it.

4. CONCEPTUAL MODEL
As shown in Figure 3, the framework grounds on a match-

ing engine that processes several data streams from a dense
distributed tuple space, which is made of information con-
cerning mobility status, requests, and services, generated by
the agents on the mobility network. The rationale of the
matching engine is triggered by incoming mobility requests,
which in turns drive continuous processing steps. After sev-
eral computing iterations on the available relevant informa-
tion, the matching engine discovers and builds services on
the mobility network, which finally result in mobility recom-
mendations for the requesting user.

4.1 Distributed Tuple Space
Agents on the mobility network can implicitly or explic-

itly generate contextual information related to their mobility
status, requests, and services. We believe a middleware in-
frastructure based on a set of networked tuple spaces [28]
could represent a viable and suitable solution to store and
share knowledge among all the agents interested in some
particular generated contents, as well to properly feed the
matching engine with the necessary information.

In particular, in the current demonstrative implementa-
tion of our infrastructure, we have built our coordination
framework by exploiting the SAPERE tuple-based infras-

Figure 3: Conceptualization of the coordination
framework that matches mobility services with mo-
bility requests. Agents on the mobility network in-
clude humans and ICT sensors-actuators such as
smart traffic lights (which count the approaching
vehicles) and smart signals (which change the dis-
played information). Data streams are dynamically
selected and processed through the matching engine.

tructure [31, 32]. SAPERE has the following characteristics
that make them suitable to implement our proposed coordi-
nation infrastructure;

• It integrates an advanced and semantic pattern match-
ing mechanism which can act as the basic building
block to realize advance matches between mobility re-
quests and offers;

• SAPERE defines a context-aware and spatial tuple
space model, where one can adopt context-aware and
spatial rules to dynamically select, evaluate, and prop-
agate information, which is particularly suited to the
area of mobility;

• SAPERE can associate specific middleware agents to
react to events occurring in the network of tuple spaces,
which can be used (and has been used, indeed) to real-
ize advanced and multifold matching mechanisms, as
described in the following subsection.



4.2 Matching Engine
The matching engine concept can be described through

the definition of a set of sub-activities, each of which has
been implemented as a SAPERE middleware agents. A de-
scription of the iterative phases that compose the matching
engine follows.

Data pre-processing and spatio-temporal aggrega-
tion. At a first place, incoming data is filtered, cleaned
and aggregated. The process of course needs a consider-
able amount of data, collected over time, until this activity
results in meaningful content for the engine. At further iter-
ations, each incoming raw data will be filtered, cleaned and
aggregated again, according to spatio-temporal constraints
of the incoming request.

Data modeling supports upper-level meaning abstractions,
by generating complex data structures useful to understand
a special mobility pattern of the considered agents.

Mobility pattern recognition and events detection
and foresight. Machine learning techniques enable regular
patterns identification and anomalies detection on the aggre-
gated input data. Really well trained classifiers can perform
effective anticipatory computing [24] that can be crucial in
dynamic environments.

Not only agents on the move own mobility patterns (in-
ferred, as example, by mining their mobility routes from
GPS data). Roadside sensors can shape the mobility status
on the mobility network as well, and so they let creation
of tuples that characterize the mobility context of a geo-
fenced area in a specific time interval. So, it is clear that it
will be possible to detect and anticipate the occurrence of
significant mobility events and have a real-time distributed
representation of them.

Agent and collaborative group profiling. Each en-
tity on the network is characterized by its own capabilities,
which let it play specific activities with proper tasks, which
are, in turns, driven by the nature of the entity itself. These
conjectures bring the necessity to model agents behavior to
the foreground (the Belief-Desire-Intention (BDI) model [26]
is one of the approaches suggested by the literature in this
field). The distributed tuple space should be populated with
profiling contents related both to individual agents and to
groups of them.

Interactions among group of agents is actually a crucial
aspect to model. A survey with some proposals is presented
in [6]. Humans interactions offers a good starting point in
collaborative behavior understanding. The discovering of
interaction reasons, modes, and effectiveness is pursued, in
order to bring collaboration aspects to the shared knowledge.
In order to motivate users in deeper collaborations, behav-
ioral changes can be stimulated through tailored incentives
and mechanisms taken from persuasion theory [11].

Recommendations and feedback impacts. Once the
engine is able to infer the up-to-date context of the agents,
the process goes on to the evaluation of which mobility
events can be useful in addressing mobility requests. The
set of identified alternatives is then sent to the requesting
user, as recommendations, in the form of available services.

A similar mining can be performed when a reconfiguration
of the ICT components on the mobility network is needed.
Consider, as example, the increase of the sampling rate for
a traffic sensor, according to the increase of variation in
the traffic level measured. In that case, the granularity of
the data collected should be increased. Hardware sensors

and actuators have to be solicited with the optimal self-
reconfiguration rules.

We believe the closing loop lets a profitable feature to
come out from the coordination framework. It determines
the continuous learning of the system, which becomes aware
of how effective has been the mobility recommendations ex-
changed among the agents, and which benefits are generated
thanks to them.

5. CASE STUDY EXAMPLE
To evaluate the effectiveness of the proposed coordina-

tion framework in the provision of smart mobility service,
we have developed a set of algorithms that aims to repro-
duce the main conceptual activities involved in the matching
engine described above.

We have focused our efforts on an Itinerary Match service,
as described in Section 2. Our aim is to evaluate potential
matches between mobility requests and offers. Commuters
with a similar typical daily route should be detected and
recommended to join ride-sharing opportunities. Of course,
the framework should support the provisioning of integrated
services, but our work is still on an initial stage and our
testings have been delimited in shaping a single service.

Even if our framework is expected to collect real-time
data, coming from the distributed tuple space, we have un-
dertaken an offline experiment, by simulating the matching
engine activities on a large dataset previously collected.

Raw data involved in our study covers one week of detec-
tions in the city of Turin, and it consists in Call Descrip-
tion Records (CDRs) collected by a mobile network opera-
tor, through the cellphone network. However, one can as-
sume that data can be collected opportunistically from a set
of drivers, through an application installed on their smart-
phones, and propagated on the nodes of the infrastructure.

Basically, each time a user performs data exchange on the
Internet, starts a call, or sends a text message, a spatio-
temporal record is created. Each occurrence contains the
user’s identifier (who makes it happen), the location of the
antenna related to the network cell (where it has happened),
and the timestamp (when it has happened).

5.1 Towards agents classification
According to the conceptual model of the coordination

framework, the first step involves an initial pre-processing
of raw data. In our case study, we have filtered data in a
way that tries to exclude non-commuters. In particular, we
define commuters as all the users that generate at least one
event in both a pair of enough distant geographic zones (let
us call them A and B), during working days. Furthermore,
we have narrowed our definition of commuters by consider-
ing two particular regions to perform that filtering. We want
to study urban mobility, so we have considered an area that
covers the inner part of Turin as the zone A (about 100Km2
wide), and a geo-fence of a broader zone (about 3000Km2
wide), which surrounds the city center (suburban area), as
the zone B. We have not made any consideration on the
mean of transportation used by the users, because the input
data is too fragmented and sparse. Best practice to suc-
ceed in this activity consists in excluding all the commuters
that are used to move along railways, cycling paths, metro
stations, or bus stops.

Next phase has involved the spatio-temporal aggrega-
tion of the selected CDRs into mobility traces.



We were interested in modeling data into upper-level mean-
ing abstractions, useful to better understand mobility pat-
terns of the considered users. We define a mobility trace
as the conjunction of a pair of temporally adjacent events,
which represents the origin-to-destination path covered by
a certain user in a defined temporal interval. This process
has resulted in the detection of sequential mobility traces
(the destination of the first matches with the origin of the
second) that can cover wide areas and time intervals.

Each user is characterized by a set of mobility traces
that can be reduced in length by doing some further spatio-
temporal aggregation. The aim here is to compress the
amount of data linked to each user, by merging the mobility
traces through their sequential relationships (in both spa-
tial and temporal domains). Thus, they shape brand new,
more extended, mobility traces. The amount of merging
occurrences has also been stored in the resulting mobility
trace. Spatial proximity has been computed on the pair of
geographical points that characterize the origin or the des-
tination on the pair of the involved traces. This is easy to
compute with a point-to-point distance formula (e.g.: haver-
sine, euclidean). Temporal closeness has been computed on
the time interval associated to the same pair of mobility
traces. This task is more tricky and it concerns the eval-
uation of several temporal relations. In our case we have
followed the ones presented by Van Beek and Manchak [27].

For each user, the mobility pattern recognition phase
has contemplated the inference of the most visited mobility
path described by the mobility traces. In particular, this
process has first resulted in the application of a K-means
clustering algorithm on the spatial dimension of the mobility
traces. The evaluation of the clustered points has been done
on the amount of occurrences related to them. Only the
two most populated clusters have been evaluated (origin and
destination candidates). The typical daily route of each user
has been discovered. Figure 4 shows an extract of the daily
routes in a 1-hour time lapse.

We formally define a daily route as the most frequent out-
ward plus the most frequent inward mobility traces gener-
ated by the same user from/to an origin to/from a desti-
nation. Actually, our daily routes mining has returned a
significant result only for the 10% of the considered users,
since most of the results have revealed the same amount of
occurrences on multiple candidates in the same cluster (too
much ambiguity on the data). We think this sudden loss of
significance can be tackled by evaluating more temporally
distributed data (one week of CDRs collection does not pro-
vide enough significance to our study).

The user’s typical daily route can be useful to detect
and anticipate mobility events. As examples:

• it describes the daily journey the user is used to per-
form, and so it represents a daily event itself;

• it reveals the expected presence of an agent on the
underlying road network, during a certain time span;

• it can be harnessed to anticipate any expected traf-
fic congestion on the underlying road network at a
certain time;

• it lets to locate a moving probe that can be queried
just in case in the future to detect mobility status
and alerts.

Figure 4: Partial representation of the users daily
routes in the city center of Turin at a given time
interval.

The contributions provided by each agent, wether it is a
requesting agent or that it is a potential service provider,
have been used to classify them, by creating their agent
profile (in the distributed tuple space) with classifying la-
bels and higher information contents.

5.2 Towards agents recommendation
Each agent profile is related to a commuter, and it ini-

tially contains only information about its daily route. In
a real case scenario it can additionally include agent’s per-
sonal details (such as demographics and interests) that can
be collected through online social networks, its mobility pref-
erences (such as its usual mean of transportation, and its
willingness to do ride-sharing), the most likely home and
work locations, its belonging to a same group of agents (due
their commute similarities), and the most relevant histor-
ical events detected. Furthermore, one can think to add
a ranking information to the agent profile that quantifies
how much it has been involved in crowdsourcing and col-
laborative initiatives. This data can narrowly reflect social
interactions among agents and their resulting benefits.Thus,
it can outline the rise of collaborative group of agents.

As our next step, mining pool of users with similar daily
routes has been done through an exhaustive search on all the
users, by assuming that they were currently moving alone
in a private car with 5 seats capacity. Each user should ex-
press at the same time its availability in offering ride-sharing
services, and its necessity to find more efficient mobility so-
lutions (in terms of vehicle occupancy rate). Our study has
been limited to consider uniformed users that are character-
ized by the same mobility desiderata. However, on mining
pool of users, one should consider maximum detour distance
and time admitted as individual factors of the driver and
each one of the passengers. A further improvement of the
algorithm should contemplate the evaluation of the existing
collaborative groups, in order to prefer users to rely on.



For any driver, we have selected the pair of mobility traces
that composes its daily route, and we have compared each
one of those with the whole set of concurrent mobility traces
(within a confidence time interval) generated by other users.
All the compared users with a mobility trace detected along
the one generated by the selected driver represent potential
passengers in ride-sharing pools, which can outline new po-
tential collaborative groups of agents. The resulting pools
contain information about the most suitable sequence of
timed-stops to pick-up and drop-off passengers.

Once the pools are detected, ride-sharing recommenda-
tions can be sent out. Their should push social interactions
between the involved users, and let new collaborative com-
munities to be shaped. The system can track how they affect
users mobility behavior and update both their individual
and collaborative profiles.

6. RELATED WORK
Finding new approaches to enable mobility services has

recently received a lot of attention. However, most of the
studies are far from reaching effective and integrated solu-
tions (from the collection of the requests to the provision of
the services).

As discussed in Section 2, most of current ITS approaches
do not offer a unified and integrated approach to support
urban mobility in all its aspect, and often they own inde-
pendent approaches for different mobility needs [1]. Also, in
our proposed framework, and unlike most of ITS proposals,
citizens are active agents of the overall infrastructure, by col-
laborating implicitly and explicitly towards the provisioning
of smart mobility services.

Of particular interest to our work is the role of a middle-
ware, which supports interactions and information exchange
among the agents on the socio-technical system, and its in-
volved in the generation of distributed intelligence. As far as
we know, the best examples in this field that deal with the
underlying infrastructure are the work of Harnie et al. [15],
which aims to specify urban-area applications with tuple
spaces abstraction, and the work of Julien and Roman [18],
which proposes a middleware to enable context-aware mo-
bile applications. The former enables intelligence through
moving buses that carry the tuples, the latter propagates
intelligence through vehicle-to-vehicle short range commu-
nications.

The works of Yang et al. and of Qu et al. [30, 25] in-
troduce the concept of Intelligent Transportation Spaces as
the integration of various ITS modules, vehicles, and road-
side infrastructure. They mainly analyze safe and effective
communication technologies to enable pervasive intelligence
without impacting too much on drivers workload. However,
neither of the works mention social interactions in matching
mobility needs and services.

To the best of our knowledge, existing works do not give
their contributions on proposing new approaches that could
enhance social interactions.

Most of the mobility services presented in literature (e.g.,
[17, 12]) merely offer tailored solutions, without worrying
about the creation of a coordinated methodology that deals
with the dynamic orchestration of heterogeneous data streams.

We believe that a unified framework that models sensing,
computing, and actuating capabilities of a socio-technical
system of mobility agents is currently missing.

7. CONCLUSIONS AND FUTURE WORK
Social interactions among humans and ICT devices could

strengthen the awareness of what urban mobility needs are,
and how they can be addressed with smart mobility services.
Social collective intelligence can be enabled, and so its util-
ity can hit citizens and convince them to collaborate and
cooperate each others through innovative sharing practices
regulated by suitable incentives.

In the future, we will reshape our case study based on ride-
sharing recommendations over a longer collection period, in
order to reduce data ambiguity. Then, we will experiment
with a larger set of mobility services, and will attempt at
integrating them towards the realization of composite mul-
timodal mobility services through our coordination frame-
work.
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