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ABSTRACT
An important stage in traffic modeling and planning is traf-
fic assignment. For this, mainly an aggregate perspective
has been taken, in which zonal data is considered. In con-
trast, if individuals are considered as active and autonomous
agents, instead of having a central component assigning trips
to links, agents do their actual route choices. This disaggre-
gate perspective yields choices that are more heterogeneous
because there is no batch assignment. A consequence is that
the agents are able to distribute themselves in the network,
thus using it in a better way. In this paper, a disaggre-
gate, agent-based perspective is taken in which agents learn
to select routes by selecting links at each node of the net-
work, thus also addressing en-route changes in the known
routes. To illustrate this approach, a non-trivial network is
used and the results are compared to iterative methods that
approximate the user equilibrium.

1. INTRODUCTION
Traffic assignment is an important stage in the task of

modeling and simulating a transportation system. It con-
nects the physical infrastructure and the demand that is
going to use it, i.e., it assign trips to each link of the road
network. Thus it appears as one of the stages in the so-called
“four-stage models” of traffic modeling. Specifically, it is the
fourth stage, the previous three being: trip generation, trip
distribution, and modal split. The present paper deals with
that last stage, hence how trips are generated (a function
of attractiveness of certain zones of the network), their dis-
tribution (how many trips per zone), and modal split are
not addressed (in fact, this paper only deals with vehicular
traffic so that other modes are not relevant).

Classical methods for traffic modeling – including trip as-
signment – normally adopt an aggregate perspective, i.e.,
zone-based instead of individual-based. The reason is that
it is simpler to get zonal data (how many trips originate or
terminate there) than individual data, which may also in-
clude which intermediate activities each road user does dur-
ing the trip, which knowledge it has, as well as its preferences
for routes. Aggregate modeling assumes a centralized entity
that controls those four stages. Hence, trips are generated,
distributed, split, and assigned. In contrast, in a disaggregate
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perspective, one talks about trip choice, destination choice,
mode choice, and route choice, in opposition to generation,
distribution, split, and assignment respectively.

The disaggregate perspective naturally fits an agent-based
approach and it is the one followed here. In it, agents do
the actual choice (instead of being told which trip to make,
which destination to go, etc.). Specifically, for the assign-
ment stage, this means that each agent will choose its route
based on local, partial knowledge. This may look trivial but
makes a difference in terms of which knowledge must be
available when one decides for an aggregate versus disaggre-
gate approach. Moreover, it also means that the choices are
as heterogeneous as possible. Ultimately, each agent can de-
cide which route to take based on its individual behavioral
rule. As this is a very complex approach (it is questionable if
such behaviors can be collected at all, at least with the kind
of technology and sensors that we have at this stage), the
perspective in the present paper is that agents are hetero-
geneous only regarding the information they have, but not
yet regarding completely heterogeneous behavioral rules. Of
course, an intermediate situation could be that classes of
agents with different behavioral rules could be modeled, as
in discrete choice modeling [5]. However, since even this
kind of data is not always available (e.g., how many percent
of the agents are greedy, etc.), this paper assumes an homo-
geneous population w.r.t. behavior. Also, having classes of
agent in the model would mean that this should be validated
against some real-world situation for which the data is not
available.

As mentioned, this paper takes an agent-based, disaggre-
gate perspective for trip assignment. The selection of route
is made by each agent, based on a reinforcement learning
(RL) method. This means that agents have knowledge about
the travel time for the shortest path between their origins
and destinations, given an uncongested state of the network.
However, they may explore other alternatives as well. Given
that congestion may arise, this exploration is likely to make
they exploit other routes. With this, a huge number of com-
binations of route or link choices arise in some links. The
problem is not only complex due to this fact, but also be-
cause each agent is trying to learn in this environment. This
is a multiagent learning problem, for which we know there
is no guarantee of convergence to the optimum choice of the
users. This user equilibrium can be found only for very sim-
ple networks, and they consider aggregate flows. Section 2
discusses this and approximate methods. However, they are
not efficient and cannot handle fully individual choices, thus
they miss a significant portion of the space of combinations



of route or link choices, eventually missing the optimal solu-
tion. Furthermore, classical methods do not handle en-route
replanning, i.e., changes in the initially planned route during
the actual trip.

In short, in this paper it is argued that a RL-based method
at individual agent level, though not guaranteed finds the
optimum solution for the trip assignment, has advantages
over some classical methods. Perhaps the most important is
that it allows a higher degree of heterogeneity in the choices
of routes, without assuming a central authority that has
global information, as it is the case with some classical trip
assignment methods. The consequences of this is a better
distribution of the road users in the road network. To il-
lustrate this, the present paper uses a non-trivial scenario,
in which some links are highly attractive to all agents, but
produce severe congestion if all of them use those links in
their trips.

This problem has not been adequately addressed in the
literature. The traffic engineering literature mainly takes the
aggregate perspective (see Section 2). When dealing with
disaggregate modeling, it is not individual-based in the sense
that each individual can make its own choice on link basis,
as in the present paper. Rather, portions of the individuals
make the same decision about which route to use. A coarse
discretization has severe implications as discussed later. In
the autonomous agents and multiagent systems literature,
scenarios dealing with more than two or three routes, and
those in which agents can change their routes on the fly are
just beginning to be investigated. It is unclear what happens
when drivers can adapt to traffic patterns in complex traffic
networks. From the point of view of the whole system, the
goal is to ensure reasonable travel times for all users, which
can be conflicting with some individual utilities. Some of
these works are discussed in Section 3.

Apart from background concepts, methods, and related
work on trip assignment, which are discussed in the next
two sections, Section 4 describes the proposed approach and
the scenario used to illustrate it. Results are shown and an-
alyzed in Section 5, while Section 6 presents the concluding
remarks and points to future research.

2. TRAFFIC ASSIGNMENT METHODS
In this section, basic concepts about traffic (or trip) as-

signment methods are given. For an extensive explanation,
please refer to Chapter 10 in [12] or to Chapter 4 in [3].

A road network can be represented as a graph G = (V,E),
where V is the set of vertices that represent the intersections
of the network, and E is a set of directed arcs, describing
the existing road segments as directed connections between
pairs of vertices. Each link lk ∈ L has a cost ck, which
is given by a function that takes as input attributes such
as length, toll, free-flow speed (and hence, free-flow travel
time), capacity, current volume, etc. A route rp is defined
by a set of connected nodes (n0, n1, n2, ...). The length of
each rp is the sum of the lengths of all links lk that connect
these nodes.

Another relevant concept that needs to be introduced here
is the one of volume-delay functions (VDFs) or cost-flow re-
lationship. These are used in macroscopic modeling and aim
at accounting for congestion effects, i.e., how over-capacity
of a given volume or flow in a link affects the speed and
travel times (costs of delays). These functions account for
the flows in the whole network, i.e., they consider the in-

teractions between flows that use the network at the same
time, and the corresponding delays that may occur. As a
simple example of a VDF, one can consider the following:
tk = tk0 + 0.02 × qk. Here, tk is the travel time on link k,
tk0 is the travel time per unit of time under free flow con-
ditions, and qk is the flow using link k. This means that
the travel time in each link increases by 0.02 of a minute for
each vehicle/hour of flow.

Given a demand Tij for trips between origin i and desti-
nation j, there are several schemes to assign these trips to
the links of a road network. Such schemes can be classi-
fied over two main dimensions: (1) are capacity constraints
included?, and (2) are stochastic effects included? The clas-
sical scheme for situations in which there are no congestion
effects and no stochasticity in route choices is the all-or-
nothing scheme (discussed later). Stochasticity is handled
by simulation-based methods. Assignment under congestion
is of course a hot research topic and many approaches exist
in this category. If one ignores the stochastic effects and fo-
cus on capacity constraints, the aforementioned concept of
VDFs play a major role. For example, given VDFs for each
link in the network, a goal of these approaches is to approx-
imate the equilibrium conditions as stated by Wardrop [19]:
“under equilibrium conditions traffic arranges itself in con-
gested networks such that all used routes between an OD
pair have equal and minimum costs while all those routes
that were not used have greater or equal costs”. This is
Wardrop’s first principle, also known as Wardrop’s equilib-
rium or user equilibrium.

Thus, given a traffic network, the assignment from the
point of view of the user equilibrium can be analytically
stated as an optimization problem: find all flows from each
OD pair s.t. only paths with minimal costs have a nonzero
flow assigned to them, which corresponds to Wardrop’s first
principle. For a mathematical formulation of this problem,
the reader is referred to Chapter 2 in [7], as well as to [14].

One problem with this scheme is that it is not possible
to solve the equilibrium flows algebraically, except for very
simple cases (e.g., two or three links connecting a single OD
pair). Thus, approximate solutions to the Wardrop’s equi-
librium were proposed. To evaluate their quality, relevant
issues are solution stability and convergence, as well as com-
putational requirements.

Such approximate solutions are discussed later in this sec-
tion. Before, it is important to introduce a general proce-
dure that underlies any of the assignment schemes. Indeed,
each assignment scheme discussed before has several steps
that must be treated in turn: (i) to identify a set of routes
that might be considered attractive to drivers; (ii) to assign
suitable proportions of the trip matrix to these routes; this
results in flows on the links of the network; (iii) to search
for convergence: many techniques follow an iterative pat-
tern of successive approximations to an ideal solution (e.g.,
Wardrop’s equilibrium).

The first step can be accomplished with any variant of
the Dijkstra algorithm for shortest paths. This step is also
known as tree-building step. However, normally these paths
are generated based on a first-approximation or an estimated
cost function (e.g., one that considers no congestion, i.e.,
only free-flow travel times are considered) because the real
cost is not known, given that it depends on the route choices
of all users. Therefore, in a non-free-flow regime (i.e., under
congestion), the second aforementioned step must be per-



formed iteratively, until some sort of convergence is reached.
Next, some classical trip assignment approaches are dis-

cussed. The typical approach to trip assignment under no
congestion is to assign all trips to the route with minimum
cost, on the basis that these are the routes travelers would
rationally select. That is as in Eq. 1, where Tij is the given
demand between origin i and destination j. This procedure
is referred as ”all-or-nothing” assignment. It is possible to
see that this scheme assigns all trips between nodes i and
j to the same links (because, as mentioned, this scheme as-
sumes no congestion).

Tijr? = Tij for the minimum cost route r?

Tijr = 0 for all other routes

}
∀i,j (1)

For route assignment under congestion (i.e., the capac-
ity of a link k can be surpassed and, as such, a VDF is
necessary to account for the effects of the over-capacity),
mainly two iterative methods can be used. The first is to
load the network incrementally in n stages, e.g., assigning
a given fraction pn (e.g., 10%, 20%, etc.) of the total de-
mand (for each OD pair) at each stage. Further fractions are
then assigned based on the newly computed link costs. This
procedure continues until 100% of the demand is assigned.
Typical values for fractions pn are 0.4, 0.3, 0.2, and 0.1. An
algorithm for this is the following (adapted from [12]):

1. select an initial set of current link costs (usually the
free-flow travel times); initialize flows at all links k:
Vk = 0; select a fraction pn of the trip matrix T such
that

∑
n pn = 1; make n = 0.

2. build the set of minimum cost trees (one for each ori-
gin) using the current costs; n← n+ 1.

3. load Tn = pnT all-or-nothing trips to these trees, ob-
taining a set of auxiliary flows Fk; accumulate flows on
each link: V n

k = V n−1
k + Fk.

4. calculate a new set of current link costs based on flows
V n
k ; if not all fractions of T have been assigned, pro-

ceed to step 2.

It must be remarked that there is no guarantee that this al-
gorithm converges to the Wardrop’s equilibrium, no matter
how small each pn is. This procedure has the drawback that
once a flow has been assigned to a link, due to the accu-
mulated nature (see step 3), it is never removed. Thus, in
case an arbitrarily low over-capacity is assigned to a link,
then it prevents the convergence to the optimum solution.
However, it is very easy to program.

The other approach is to start from some initial values for
the link costs and find the minimum cost routes. Trips are
then assigned to these routes. New costs are computed and
this cycle is repeated until there is no significant change in
link or route volumes. For instance, in the method of suc-
cessive averages, the flow at the n-th iteration is calculated
as a linear combination of the flow on the previous itera-
tion and an auxiliary flow resulting from an all-or-nothing
assignment in the n-th iteration. This can be formalized as
the following procedure (again, adapted from [12]):

1. select an initial set of current link costs (usually the
free-flow travel times); initialize flows at all links k:
Vk = 0; make n = 0.

2. build the set of minimum cost trees (one for each ori-
gin) using the current costs; n← n+ 1.

3. load the whole of the matrix T all-or-nothing to these
trees obtaining a set of auxiliary flows Fk.

4. calculate the current flows as: V n
k ← (1 − φ)V n−1

k +
φFk, with 0 ≤ φ ≤ 1.

5. calculate a new set of current link costs based on V n
k ;

if no V n
k has changed significantly in two consecutive

iterations, stop; otherwise proceed to step 2 (or, alter-
natively, use a maximum number of iteration).

The last step of the method admits several ways to fix
the value of φ. A useful one is to make φ = 1/n. There
is a proof that this produces solutions convergent to the
Wardrop’s equilibrium but this may be very inefficient.

Note that both iterative methods to approximate Wardrop’s
equilibrium are based on the all-or-nothing scheme (applied
in each iteration). Thus, even for fine discretization levels,
a number of trips is assigned to the same links.

3. RELATED WORK
A number of works from transportation planning and eco-

nomics, as well as from mathematics and operations re-
search, physics, and computer science deal with this prob-
lem. Computer science plays a role when it comes to solving
large-scale road network problems. The most relevant and
close to the approach proposed here are discussed next.

In [11], the author makes the point that trip assignment
schemes that are based on steady-state flow conditions of
the road network are adequate only for analysis of long-
term strategic planning horizons, but not for tactical mea-
sures that are of interest in applications around intelligent
transportation systems. However, the author also recog-
nizes the challenges of finding an analytic representation
that satisfies the laws of physics and traffic sciences, while
also being mathematically tractable. Therefore they pro-
pose a simulation-based approach for the dynamical traffic
assignment (DTA) problem. In DTA one goal is to describe
how flows develop not only spatially but also temporally
in the network. This means that DTA considers road users
that depart from an origin to a destination at different times.
Hence, they experience different travel times and, as such,
the user equilibrium condition applies only to travelers who
are assumed to depart at the same time between the same
OD pair. In the present work, departure at different times
is not considered, but the approach is not purely simulation-
based given that the agents learn by interacting with the en-
vironment. DTA is also the focus of [16] in which the authors
propose a predictive DTA model, also based on simulation
and combined with the method of successive averages. Henn
([8]) proposes a fuzzy-based method to take the imprecisions
and the uncertainties of the road users into account. These
predict costs for each path based on a fuzzy subset that
can represent imprecision on network knowledge, as well as
uncertainty on traffic conditions.

As mentioned, a natural way to represent the problem of
route choice (in opposition to trip assignment) is to model
it using an agent-based modeling and simulation approach.
Hence, there has been some works in this direction. An
example is MATSim [1, 2], which deals with activity-based
simulation of route choice.



Route choice under various levels of information is turning
a hot research topic due to the increasing use of navigation
devices. Agent-based route choice simulation has been ap-
plied to research concerning the effects of intelligent traveler
information systems. Main questions here are what hap-
pens to the overall demand, if a certain share of drivers is
informed and adapt. What kind of information is the best
one to be given? Examples for such research line can be
found in [9] for a two-route scenario, or in [6] where a neural
net-based agent model for route choice is presented regard-
ing a three route scenario. In [13], a simple network for
fuzzy-rule based routing (including qualitative decisions) is
used.

One problem with these approaches is that their appli-
cation in networks with more than a couple of routes be-
tween a few locations is not trivial. The first problem is
that a set of reasonable route alternatives has to be gener-
ated. A n-shortest path algorithm can be used but it may
output routes that differ only marginally. Additionally, all
approaches, including agent-based ones, consider one route
as one complete option to choose. On-the-fly re-routing has
hardly been a topic for research. Even more sophisticated
agent architectures such as the one proposed by [15] do not
include the possibility of re-routing during the trip.

To address this issue, re-routing in a scenario with multi-
ple origins and destinations was studied in [4]. Besides route
choice by the driver agents, the authors also consider traf-
fic lights as adaptive agents in order to test whether such a
form of co-adaptation may result in interferences or positive
cumulative effects. This was one of the first works in the
agent-based community that has dealt with agents comput-
ing new routes on the fly. This is important because en-route
modifications cannot be ignored in a realistic simulation of
decision making in traffic. An abstract route choice scenario
was used, having some features of real world networks. How-
ever, in this work no comparison is made to methods that
approximate the user equilibrium thus, it is not possible to
fully assess the quality of those results.

Degradation in performance caused by the selfish behavior
of individual road users remains an important research topic.
[10] have proposed the so-called price of anarchy to measure
this degradation. They show results for small networks such
as the one used to illustrate the Braess paradox.

A learning-based approach was used by [17] where agents
learn to select routes; thus there is no en-route changes in
the routes. The size and topology of the network is not
mentioned but it seems to be a single origin and destination.

4. APPROACH AND CASE STUDY
One of the problems with the methods discussed in Sec-

tion 2 is that the set of routes that are considered in each
step of the iterative process is reduced in order to gain in
terms of computing time. However, this set can be far from
the set that would be used by real world drivers, even if con-
sidering their informational constraints regarding the status
of the traffic at the moment they make decisions. In other
words, the granularity of the route selections is very coarse.

The approach proposed here can handle much finer gran-
ularities; actually, there is no limitation or restriction on
the number and kinds of routes that users can select. This
means that all possible routes can be combined (one for each
agent), contrarily to schemes discussed in Section 2. This
occurs because the granularity of those schemes is coarse per

se. For example, the all-or-nothing approach is the extreme
case where the whole volume for each OD pair is assigned to
the same route. However, even less coarse methods as for in-
stance the incremental method, still assigns the same route
to a given fraction of road users. Of course these fractions
can be small but the efficiency of this method decreases with
the discretization (number of incremental steps). Similarly,
in the successive averages method, the computational cost
of the method depends on a good choice of the parameter φ.
If it is a function of the parameter n (see Section 2), then
the efficiency may be compromised.

In the iterative methods it is not possible to actually as-
sign a different route to each road user at each iteration, as
the method proposed here does. For this, this method pays
a cost (more iterations are necessary as agents are learning
while selecting routes) but it is still a tractable method given
that each iteration typically takes just a few minutes. As it
will be discussed further, the proposed method and the iter-
ative methods present basically similar running times, but
the former is heterogeneous in terms of combinations of in-
dividual route choices, thus exploring the possible search
space in ways that are not possible with the iterative meth-
ods (without incurring in much higher running times).

The approach proposed here is based on RL. Agents learn
the value of their actions by interacting with an environ-
ment that gives a feedback signal to each agent, based on
which state the agent is in, and the action this agent de-
cides to make while in that state. RL problems can be
modeled as Markov decision processes (MDPs). An expe-
rience tuple 〈s, a, s′, r〉 denotes the fact that the agent was
in state s, performed action a and ended up in s′ with re-
ward r. Here, a popular model-free algorithm for RL is used,
namely Q-learning. The update rule for each experience tu-
ple 〈s, a, s′, r〉 is given in Equation 2, where α is the learning
rate and γ is the discount for future rewards.

Q(s, a)← Q(s, a)+α
(
r + γ maxa′ Q(s′, a′)−Q(s, a)

)
(2)

Considering a high number of agents in multi-agent RL turns
the problem inherently more complex. This complexity has
many causes and consequences, one being that mathematical
convergence guarantees no longer hold.

The learning agents are the road users; the environment is
a road network, where nodes form the set of states an agent
may be, and the links departing from each node form the set
of actions an agent may take. Each agent has an origin and
a destination. Routes connecting these two are represented
as a set of consecutive nodes. Of course there are many ways
in which a destination node can be reached. Because links
have a travel time that depends on the number of agents
using them in their route choices, this problem is complex.
Mostly, the desirable, shortest path under free-flow, may end
up producing a high travel time if too many agents want to
use it. Agents then need to learn how go from their origins
to their destinations by finding routes that allows them to
distribute themselves in such a way that the optimal number
of agents use each link, minimizing their travel times.

In order to address a non trivial network, the one sug-
gested in [12] (Exercise 10.1) is used, as depicted in Figure 1.
All links are two-way. This network represents two residen-
tial areas (nodes A and B) and two major shopping areas
(nodes L and M). The numbers in the links are their travel
times under free flow (in both ways). These also appear in
the second column of Table 3. For the shortest path algo-



Table 1: Shortest Paths and Free-Flow Travel Times
(FFTT) for the Four OD Pairs (original and modi-
fied networks).

OD original modified
pair sh.st path FFTT sh.st path FFTT
AL ACGJIL 28 ACDGJIL 23
AM ACDHKM 26 ACDGJKM 23
BL BDGJIL 32 BDGJIL 22
BM BEHKM 23 BDGJKM 22

rithms, these can be seen as their costs so henceforth both
terms are used indistinctly.

Further, in order to make the assignment more complex,
two modifications in the fixed costs were made: to make
an arterial more attractive to all road users (and hence the
learning effort more difficult as there is more competition for
cheap resources), the fixed costs of links DG and GJ (and
their opposite directions as well) were reduced from, respec-
tively, 7 and 3 to zero. These modifications are indicated in
Table 3 by shadowed cells. This way the shortest paths, for
each OD pair, and their travel times (under free-flow) are
shown in Table 1, both for the original network and for the
modified network. Note that the proposed approach (as well
as the iterative methods) were run for both the original and
for the modified versions but since the latter is more chal-
lenging, only results steaming from the experiments using
the latter are mentioned. Notice, however, that the general
conclusions are valid for both, i.e., the RL-based approach
outperforms the other methods. Henceforth this network is
referred as OW network.

In the experiments, 1700 driver agents were used as this
is the proposed demand for the OW network during a Sat-
urday morning peak (see exercise 10.1 in the book) and an
estimated demand from A and B to L and M as depicted in
Table 2. Further, the exercise proposes a VDF that relates
cost c(qk) at link k to its flow qk. Specifically, it is proposed
that the travel time in each link is increased by 0.02 for each
vehicle/hour of flow (tk = tk0 + 0.02 × qk, as discussed in
Section 2).

This simple scenario goes far beyond simple two-route (bi-
nary) choice scenario. It captures properties of real-world
scenarios, like interdependence of routes with shared links
and heterogeneous capacities and demand throughout the
complete network. Moreover, the number of possible routes
between two locations is high and/or it may involve loops
as links are two-way, and it has more than a single OD pair.
Hence, it is hardly possible to compute the Wardrop’s equi-
librium algebraically.

Figure 1: Original Road Network (as proposed by
Ortuzar and Willumsen)

Table 2: Average Travel Time per OD Pair: itera-
tive methods

OD Pair Trips Incremental Succ. Avgs.
AL 600 69.00 68.04
AM 400 63.00 62.58
BL 300 69.60 64.50
BM 400 63.00 58.42

1700 66.28 63.87

5. EXPERIMENTS AND RESULTS
Experiments were conducted using both the iterative meth-

ods discussed in Section 2, and the RL-based approach pro-
posed here. As mentioned, the main aim is to show that a
disaggregate, decentralized, agent-based approach in which
agents learn by interacting with the environment, is able to
find solutions that have at least the same travel times as the
iterative methods, with little computational effort. More-
over, it is possible to show that the routes selected using the
proposed approach are sometimes different from those found
by the centralized, iterative approaches used as comparison.
The fact that the RL-based approach was able to find lower
travel times shows that the routes found by the iterative
approaches could still be improved if more iterations were
used, but this is unlikely to happen due to the coarse nature
of discretization that underlies these methods.

Results for incremental and successive averages methods
steam from the implementation of these algorithms provided
by the publisher of Ortuzar and Willumsen’s book. The
shortest paths under free-flow (Table 1) were found alge-
braically. For the RL-based approach, simulations results
reported here are averaged over 10 repetitions (for each con-
dition). To render some tables cleaner, standard deviations
are not always shown but they are of the order of 5% at
most. Running times are in the order of few seconds for
the iterative methods. For the RL-based approach, running
times greatly depend on the number of episodes and on the
value of the discount rate γ. For the cases shown next, sim-
ulations take at most a few minutes. Note however that
the number of episodes can be greatly reduced, as indicated
in the plots. Experiments were run in a standard PC (8
GB RAM), running Linux (for the RL-based approach) and
Windows XP (for the algorithms provided by Ortuzar and
Willumsen).

For evaluation, the performance measure is the same used
in [12]: travel times averaged over all agents and also for each
OD pair. Also, the number of trips using each link is shown,
highlighting some differences found among the methods.

5.1 Results from Iterative Methods
Results for the iterative methods discussed before are shown

in Tables 2 and 3; these were obtained using pn = 0.4, 0.3, 0.2, 0.1
for the incremental method, and φ = 1/n and 100 iterations
as stop criterion.

In Table 3, it is possible to see that both methods yield
very different values for some links. Take links CD, JI, JK,
JM, GK, KJ, DG, AD and BA as examples. Later, these
numbers can be compared to the RL-based approach.

Table 2 summarizes the average travel times per OD pair
for both methods, as well as the average travel times over
all trips.



Table 3: Travel Time Each Link: incremental and
successive average methods.

Fixed Incremental Succ. Avg.s
Link Cost Flow Cost Flow Cost
AB 7 0 7 4 7.08
AC 5 800 21 655 18.10
AD 15 200 19 348 21.96
BA 7 0 7 7 7.14
BD 11 370 18.40 374 18.48
BE 11 330 17.60 323 17.46
CA 5 0 5 0 5
CD 7 400 15 10 7.20
CF 11 240 15.80 372 18.44
CG 9 160 12.20 276 14.52
DA 15 0 15 0 15
DB 11 0 11 0 11
DC 7 0 7 3 7.06
DE 7 0 7 0 7
DG 0 770 15.40 551 11.02
DH 9 200 13 178 12.56
EB 11 0 11 0 11
ED 7 0 7 0 7
EH 7 330 13.60 323 13.46
FC 11 0 11 0 11
FG 9 0 9 0 9
FI 13 240 17.80 375 20.50
GC 9 0 9 0 9
GD 0 0 0 0 0
GF 9 0 9 3 9.06
GH 9 0 9 0 9
GJ 0 890 17.80 700 14
GK 13 40 13.80 124 15.48
HD 9 0 9 0 9
HE 7 0 7 0 7
HG 9 0 9 0 9
HK 3 530 13.60 501 13.02
IF 13 0 13 0 13
IJ 9 0 9 0 9
IL 2 600 14 450 11
JG 0 0 0 0 0
JI 9 360 16.20 75 10.50
JL 12 300 18 450 21
JK 9 320 15.40 8 9.16
JM 12 0 12 176 15.52
KG 13 0 13 0 13
KH 3 0 3 0 3
KJ 9 90 10.80 9 9.18
KM 2 800 18 624 14.48
LI 2 0 2 0 2
LJ 12 0 12 0 12
MJ 12 0 12 0 12
MK 2 0 2 0 2

sum 543.4 522.38

5.2 Results of the RL based Approach
The approach presented in Section 4 has some parameters

that refer basically to the Q-learning. These are the learn-
ing rate α, the discount rate γ, and the exploration rate ε.
In the present paper, ε starts at ε0 = 1 and is multiplied
by a factor of 0.995 at each episode in order to allow agents

to explore the environment for a certain time. The value of
this multiplicative factor must be set to fit the simulation
horizon. As a general rule, 1000 episodes were run, so that
that after 1000 episodes ε ≈ 10−3. Notice that not all com-
binations of values for α and γ require 1000 episodes. In
some cases convergence to a given route choice pattern is
reached much earlier, but for uniformity, the same number
of episodes (1000) was used in all cases.

Next the results obtained when this approach was em-
ployed in the OW network are presented. Tables 4 and 5
show different measures that are of interest. First, Table 4
shows the average travel time over all 1700 trips, at the last
episode, for different combinations of values for α and γ. To
render it more clear, standard deviations are omitted and
the numbers were rounded to integers. It is clear that the
discount factor γ plays a major role in the learning, while
the learning rate α is less selective. This can be explained by
the fact that choices that can be made at states that can be
reached from a given state, are very important in this prob-
lem since the agent is trying to make a series of decisions in
order to minimize travel time at the whole route. Therefore
the discount rate must be high. It needs to be remarked
that, in some cases, the number of trips over these links are
much higher than the number of users. This is due to the
fact that loops are possible and some users perform these
loops. This is mainly the case when the discount rate is low
and agents do not consider the future.

If one takes travel times given in Table 4, for different
values of α and for the highest value of γ, it is is possible
to see that these values (between 51 and 52) are lower than
those shown in the last line of Table 2. Thus the RL-based
approach yields travel times that are lower than the itera-
tive methods, with roughly the same order of running times.
Moreover, and perhaps more interesting, the choice made
by the agents is based purely on local knowledge, whereas
the iterative methods assume global knowledge of the links’
costs.

Apart from values averaged over all links, it is interesting
to check what happens in each link. As remarked before,
the number of trips using some links differ much in the in-
cremental and in the successive averages methods. Thus, a
direct comparison with the RL-based approach is interest-
ing. Table 5 shows the number of trips in selected links (to
facilitate the comparison, numbers for the iterative methods
were copied from Table 3), for α = 0.5 and γ = 0.99. The
criterion for inclusion in this table was that either the re-
sult achieved by the RL-based approach was different from
both iterative methods, or it is close to one of these while
these differ among them. For instance, for the link JM, the
incremental and successive average methods assign zero and
176 trips respectively. The RL-based approach assigns 185
trips (with standard deviation – given the 10 runs – of about
8), thus being closer than the value obtained using the suc-
cessive averages method. For cases in which the method
proposed here differs from both, take for instance links AB
and BA.

In this paper, an important point is that this difference,
far from being bad, is what makes the RL-based approach
more efficient. Links AB and BA were barely used in the
trips assigned using the iterative methods. However, the
learning agents found out that they can distribute them-
selves in ways that use the resources (links) in more efficient
ways.



Table 4: Average Travel Time (over all 1700 trips)
γ α

0.1 0.3 0.5 0.7 0.9
0.99 52 52 51 51 51
0.8 50 50 50 50 50
0.6 58 56 55 55 57
0.5 84 80 81 76 80
0.4 114 111 100 102 107
0.2 329 225 183 152 181

Table 5: Number of Trips Over Selected Links, for
α = 0.5 and γ = 0.99

RL-based:
Link Incremental Succ. Avg.s Avg. (Std. Dev.)
AB 0 4 213 (8)
BA 0 7 168 (4)
CD 400 10 103 (5)
JM 0 176 185 (8)
KJ 90 9 5 (1)

That travel times were efficient at user level was already
discussed. A final comparison that can be made regards the
sum of all costs, a measure of how efficient the method is at
global level. The last line of Table 3 shows that the sum of
costs over all links is over 500 for both iterative methods.
When this sum is made considering the costs of links re-
sulting from the RL-based approach, this value reaches only
462.94, with standard deviation of 0.22.

So far tables have shown the results of the assignment af-
ter 1000 learning episodes. The inset plot in Figure 2 depicts
how the sum of links’ costs change along time. The main
plot shows how the number of trips changes with time, for
three selected links: AB, BA and CD. These were selected
because they show the greatest variation regarding the iter-
ative methods, as shown in Table 5. Note that for α = 0.5
and γ = 0.99, it would not be necessary to run 1000 episodes
to reach convergence.

Figure 2: Performance x time: sum of costs over all
links (inset) and number of agents in selected links.

6. CONCLUSIONS AND FUTURE WORK
Traffic assignment is an important step in modeling a

transportation system. Classical approaches assume some
degree of centralization, in which trips are assigned to links
or routes. In this paper the perspective of the road user is
taken: these users are modeled as agents that autonomously
select their routes in an adaptive way. A similar perspective
is taken in simulation-based works mentioned in Section 3,
but there are two main differences to the present paper.
First, here, agents do not anticipate traffic states (e.g., us-
ing fuzzy sets) but rather learn these states while interacting
with the environment. This is a hard multiagent learning
problem given the number of agents (here, thousands) try-
ing to learn simultaneously in a competitive environment
(links are shared by many agents). Second, agents form
their routes while taking actions at nodes of the network,
thus addressing the issue of en-route planning (as this task
is known in traffic engineering, even if it is not a planning
task from the AI point of view). In most previous simula-
tion scenarios route adaptation was only allowed before and
after the actual driving.

Results are twofold. First, the routes that are learned
using the proposed approach are sometimes different from
those found by the centralized, iterative approaches used as
comparison. Second, the learning-based approach is more
efficient than the iterative methods: exactly because the
agents distribute themselves in different ways in the links
of the road network (as compared to these approaches), the
overall travel time is approximately 15% less than when it-
erative methods are used to assign trips to links. Also, the
average travel time is lower for each of the OD pairs. This
suggests that there is room for further improvements when
the iterative methods are used. However, only few works re-
ported in the literature show how far their results are from
the optimum (only those dealing with simple networks).

A future direction of this work is to investigate the math-
ematical properties of the mathematical properties of the
multiagent learning approach in order to provide insights
about the bound to the optimum assignment. As this is a
complex problem, one possibility is to use domain-dependent
knowledge and/or properties of the domain. Also, a kind of
reward shaping scheme as proposed in [18] can prove useful.
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