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ABSTRACT
One proposes to analyze the stability of the uniform so-
lutions of microscopic second order following models with
K ≥ 1 predecessors in interaction. We calculate general
conditions for that the linear stability occurs, and explore
the results with particular distance based pedestrian and
car-following models. Non linear relations between K and
the stability are established.

Categories and Subject Descriptors
G.1.7 [Ordinary Differential Equations]: Convergence
and stability

General Terms
Linear stability theory

Keywords
Car-following model; Linear stability analysis of uniform so-
lution; Number of predecessors in interaction

1. INTRODUCTION
Microscopic particles systems are frequently used to model

pedestrian crowd or road traffic flow behaviors [3, 6]. Con-
tinuous models are defined with differential equations sys-
tems. The differential systems can be ordinary, stochastic
or delayed, and of first or second order. The models have
the uniform configuration (where the spacing and the speed
are constant and equal) as equilibrium solution. The linear
stability analysis of the uniform solutions allows to describe
stationary state of the models [11]. The method consists in
determining conditions on the parameters for which pertur-
bations around the uniform solution vanish.

The number of predecessors in interaction is an essential
parameter of the models. It is interpreted as an anticipa-
tion factor in traffic flow modeling [15]. Many car-following
models with several predecessors in interaction exist in the
literature [2, 10, 9, 12]. For pedestrian models, the param-
eter corresponds to the interaction range. In this paper, we
calculate the linear stability for general ordinary models of
second order with K ≥ 1 predecessors in interaction. The

results are explored with particular distance-based pedes-
trian and car-following models. They allow to justify when
and why only a limited number of preceding agents needs
to be taken into account when practically determining the
acceleration of an agent.

1.1 Definition of the model
Let us consider an infinite 1D system of agents moving in

the same direction. We denotes n ∈ N the index and (xn)
the curvilinear positions of the agents. We suppose that the
initial positions are such that the predecessor of the agent n
is the agent n+ 1.

The dynamics of the system are described by the second
order model

ẍn(t) = A
(
ẋn(t), xn+1(t)− xn(t), ẋn+1(t), . . . ,

xn+K(t)− xn(t), ẋn+K(t)
)
.

(1)

The acceleration A of the agent n at time t ≥ 0 depends on
the speed, and on the speeds and distance spacings of the
K predecessors at the same time. We assume the function
A differentiable.

1.2 Uniform solution
For a given mean spacing d > 0, we suppose that a speed v

exists such that A (v, d, v, 2d, v, . . . ,Kd, v) = 0. Under this
assumption, the uniform (or homogeneous) configurations
H such that for all t ≥ 0 and all n

xHn+1(t)− xHn (t) = d, xHn (t) = xHn (0) + vt, (2)

are solution of the system. It exists an infinity of uniform
configurations, depending on the initial conditions. The lin-
ear stability of these solutions is investigated in this paper.

2. LINEAR STABILITY ANALYSIS
The literature distinguishes local stability analysis, for a

finite line of agents with a leader traveling at a know speed,
and global stability, for agents on a ring or on an infinite
lane. The global stability conditions are more restrictive
since they contain as well convective perturbations, that can
locally vanish [14]. Here the global stability conditions are
calculated on an infinite lane.

2.1 Characteristic equation
The stability conditions are calculated by studying the

evolution of the differences x̃n(t) = xn(t)−(xHn (0)+vt). An
uniform solutionH is stable if limt→∞ x̃n(t) = limt→∞ ˙̃xn(t) =
0 for all n.



A first order Taylor approximation of (1) leads to the lin-
ear dynamics

ÿn(t) =

K∑
k=1

αk(yn+k(t)− yn(t)) +

K∑
k=0

βkẏn+k(t). (3)

where αk = ∂A
∂dk

(v, d, v, . . .) and βk = ∂A
∂vk

(v, d, v, . . .).

A uniform configuration H is linearly stable if limt→∞
yn(t) = limt→∞ ẏn(t) = 0 for all n. If we solve (3) using the
Ansatz yn(t) = ξ eλt+inθ, ξ, λ ∈ C2, θ ∈ R, we obtain the
characteristic equation

λ2 =

K∑
k=1

αk(eikθ − 1) + λ

K∑
k=0

βke
ikθ. (4)

H is linearly stable if the non nil roots of the characteristic
equation have strictly negative real parts.

2.2 Linear stability condition
The characteristic equation is the complex polynomial

equation with coefficients (νθ, µθ, σθ, ρθ) ∈ R4

λ2 + wθλ+ zθ = 0, wθ = µθ + iσθ, zθ = νθ + iρθ (5)

with µθ = −
∑K
k=0 βkckθ, νθ =

∑K
k=1 αk (1− ckθ), σθ =

−
∑K
k=1 βkskθ, ρθ = −

∑K
k=1 αkskθ, using the notations cx =

cosx and sx = sinx.
The sufficient and necessary conditions for that a polyno-

mial with complex coefficients have all its zeros in the half-
plane <(λ) < 0 are given in [4, Th. 3.2]. The results are a
generalization of the so-called Hurwitz conditions for poly-
nomials with real coefficients. They are here

∑K
k=0 βk < 0

and

µθ > 0, µθ(νθµθ + ρθσθ)− ρ2θ > 0, θ ∈]0, π]. (6)

The condition is general and can be rediscovered in [13] with
a model with one predecessor, or in [10] with the multi-
anticipative optimal velocity model.

3. DISTANCE BASED MODELS
Many pedestrian dynamics models continuous in space are

based on the superposition of a positive term to the desired
speed and a negative repulsive one with the predecessors
(see for instance [8, 5, 7])

ẍn(t) =
1

τ
(v0 − ẋn(t))−

K∑
k=1

f (xn+k(t)− xn(t)) , (7)

with v0, τ > 0 and f a differentiable, positive, decreasing
function on R+. Here, the repulsive force f solely depends
on the spacing.

With this model class, for a given mean spacing d, the
equilibrium speed is v = v0 − τ

∑K
k=1 f(kd). The speed v

depends on v0,K, d, τ and f(.) parameters. The first linear
stability condition (6) is here−1/τ < 0. It is always true and
implies the preliminary assumption. The second condition
(6) is

− 1

τ2

K∑
k=1

f ′(kd) (1− ckθ)−

(
K∑
k=1

f ′(kd)skθ

)2

> 0. (8)

Note that f ′(d) ≤ 0 for all d and thus the first term is
positive and that the condition does not depend on v. The
stability occurs for a relaxation time τ small enough. More

precisely the homogeneous configurations are stable if and
only if

0 < τ < τK = inf
θ∈]0,π]

τ
(θ)
K ,

with τ
(θ)
K =

(
−
∑K
k=1 f

′(kd) (1− ckθ)(∑K
k=1 f

′(kd)skθ
)2 )1/2

.
(9)

We have limx→∞ f(x) = f(y) −
∫∞
y
|f ′(u)| du = 0 for

all y > 0. This implies
∫∞
y
|f ′(u)| du < ∞ since for all

y > 0, f(y) < ∞. Using the Cauchy criteria and changing
the variable, one then obtains

∞∑
k=1

|f ′(dk)| <∞, d > 0. (10)

This proves the absolute convergence of τ
(θ)
K and τK , and

means that the stability condition at the limit K → ∞
may be approximated for an finite value of K. It exist with
this model class an intrinsic interaction range. The value
of the range depends on the convergence speed of the series∑
k |f
′(dk)|. This point will be further investigated using

well-know repulsive forces f .

3.1 Exponential and inverse models
Let firstly consider the exponential repulsive force with

parameters A,B > 0 into (7)

f(d) = Ae−d/B , f ′(d) = −A/Be−d/B . (11)

This force is used in the social force model [8]. Because of the
use of exponential decreasing, the interaction model is short
range. We use the uni-dimensional parameter u = d/B > 0
and critical relaxation time

τ̃
(θ)
K =

√
A

B
τ
(θ)
K . (12)

We have with the exponential repulsive force (11) using (9)

τ̃
(θ)
K (u) =

(∑K
k=1 e

−ku (1− ckθ)(∑K
k=1 e

−kuskθ
)2

)1/2

. (13)

u is a shape parameter, while A and B are scale parameters
for the stability.

The inverse repulsive force with parameters A,B, q > 0 is

f(d) =
A

(d/B)q
, f ′(d) = − qA/B

(d/B)q+1
. (14)

This model is used in [5] with q = 1 and in [7] with q = 2.
Here, the model can be short or long range depending on the
value of q. It induces a polynomial convergence speed of f ′

to zero, slower than the exponential speed of the model (11).
This suggests higher number of pedestrians in interaction K
to stabilize the critical time τK . We have with this model
the dimensionless critical relaxation time

τ̃
(θ)
K (u, q) =

(
uq+1

q

∑K
k=1(1− ckθ)k−(q+1)(∑K
k=1 skθk

−(q+1)
)2
)1/2

. (15)

Here again, only q is a shape parameter.



3.2 Stability condition
The uniform solution (2) is linearly stable for the distance

based models (11) and (14) if the relaxation time τ is strictly

less than critical time τK = infθ τK(θ) (or if
√
A/Bτ < τ̃K).

Thus we have to calculate the minimum of the functions θ 7→
τ̃K(θ) to determine the stability condition. Yet, the signs
of the derivative of these functions are hardly analytically
extracted. We investigate it numerically.

The critical time (13) of the exponential model (11) is
plotted as a function of θ in figure 1. Here, K varies from

1 to 25, and u = 0.4, 1 and 2.5. The τ̃
(θ)
K are minimal

at the limit θ → 0 for all K, i.e. τ̃K = limθ→0 τ̃
(θ)
K with

the exponential force (11). Further numerical investigations
(not shown here) confirm this observation.
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Figure 1: The τ̃
(θ)
K , K = 1, . . . , 25, as a function of θ

for the exponential model (11). From top to bottom
u = 0.4, 1, 2.

The critical time (13) for the inverse model (14) is plotted

as a function of θ in figure 2 with q = 1, 2 and 3. The τ
(θ)
K

are minimal for θ → 0 when K is low. For high values of K,

the minimums of τ
(θ)
K are reached for θ = θq,K > 0. Further

results show that θq,K converge when K increases. There-
fore the wave’s lengths the more unstable have characteristic
values with the inverse model, if K is large enough.
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Figure 2: The τ̃
(θ)
K , K = 1, . . . , 25, as a function of

θ for the inverse model (14). From top to bottom
q = 1, 2, 3; u = 1.

3.3 Stability function of K
The dimensionless critical time τ̃K delimits the border of

the linear stability of uniform solutions. The stability occurs
if
√
A/Bτ is strictly smaller than τ̃K (see (9)).

The dimensionless function K 7→ τ̃K is plotted in figure 3
for the model (11), and in figure 4 for (14). One can observe
for both models that the critical time τK converges to a
constant value through a single damped oscillation. This
non linear relation between K and the stability is surprising.
Increasing the number of pedestrians in interaction firstly
results as a decreasing of the stability (at least until K = 2).
Then increasing K increase τK and so the stability. The
convergence of τK is relatively smooth with the model (11).



One observes a brusque transition with the model (14), when
the minimum is reached for the θq,K . The form and speed
of the damping of function K 7→ τ̃K depend on parameter u
for the model (11), and on q for (14).
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Figure 3: τ̃K = infθ τ̃
(θ)
K as a function of K for the

exponential-distance model (11) with u = 0.4, 1, 2.

3.4 Proportion of variation
The figures 3 and 4 show damping oscillations of τ̃K as K

increases. Here, we investigate the amplitude of the oscilla-
tion. For that purpose, we introduce the proportion

ϕ = 1− minK τ̃K
maxK τ̃K

= 1− minK τK
maxK τK

, (16)

that is the same for the initial and dimensionless critical
time τK and τ̃K .

The proportion of variation ϕ ∈ [0, 1] describes how the
models depend on the number K. For ϕ ≈ 0, the model
poorly depends on the interaction range, i.e. the stability
condition as K → ∞ is well approximated using few pre-
decessors (K small), and oppositely for ϕ ≈ 1. For both
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Figure 4: τ̃K = infθ τ̃
(θ)
K as a function of K for the

inverse model (14) with q = 1, 2, 3; u = 1.

models (11) and (14), ϕ does not depend on A and B. It
depends on u for the exponential model (11), while it de-
pends on q for the inverse model (14), but not on u.

In figure 5, the proportion of variation ϕ is plotted as a
function of u for the model (11) (top plot), and as a function
of q for the model (14) (bottom plot). ϕ tends to zero as
the dimensionless mean spacing u increases within model
(11). This means that for low density level, the stability
condition at the limit K → ∞ can be well estimated using
few predecessors. For high densities, the variability of τ̃K is
more important. The same phenomena occurs as q increases
within model (14). For short range model where q is high,
few predecessor in interaction are sufficient to estimate the
stability condition as K → ∞ and oppositely. Surprisingly,
the proportion of variation does not depend on the density
level with the inverse model. This changes in the case when
the distance spacing d is taken as d− ` to take into account
the size ` > 0 of the pedestrians.
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Figure 5: Proportion ϕ of variation of τK as K in-
creases. Left, function of u, model (11). Right, func-
tion of q, model (14).

3.5 Stability function of the parameters
The function τ̃K depends on the parameter u for the model

(11), and on (u, q) for (14). For the model (11), the function
u 7→ τ̃K(u) increases to infinity as u increases. This means
that the stability increase as the distance spacing increases,
for any K. One has explicitly

∂τ̃
(θ)
K

∂u
(u) =

τ̃
(θ)
K (u)

2
g
(θ)
K (u) > 0 (17)

with g
(θ)
K (u) = −

∑K
k=1 k e

−uk(1−ckθ)∑K
k=1

e−uk(1−ckθ)
+

2
∑K
k=1 k e

−ukskθ∑K
k=1

e−ukskθ
.

We have g
(θ)
1 (u) = 1 for all u, while limu g

(θ)
K (u) = 1 for

all u and all K > 1.
In top figure 6, the increasing critical time τ̃K(u) at the

limit K → ∞ are compare to the time τ̃1(u) for K = 1.
One has limK τ̃K(u) < τ̃1(u) for all u, while, as expected
since the proportion of variation tends to zero, limu τ̃1(u) =
limu τ̃K(u) for any K.

For the model (14), the function u 7→ τ̃
(θ)
K (u, q) also in-

creases as u increases since

∂τ̃
(θ)
K

∂u
(u, q) =

q + 1

u
τ̃
(θ)
K (u, q) > 0. (18)

The relation q 7→ τ̃
(θ)
K (u, q) is more complicated. For u <

1, the function decreases to zero as q increases. This means
that stability never holds for any τ for enough high q. For

u = 1, τ̃
(θ)
K (1, q) tends to a constant value, while, for u > 1,

the relation, successively decreasing and increasing, admits

a minimum for certain q depending on u. One has

∂τ̃
(θ)
K

∂q
(u, q) =

τ̃
(θ)
K (u, q)

2

(
lnu− 1

q
+ h

(θ)
K (q)

)
, (19)

h
(θ)
K (q) = −

∑K
k=1 ln k k−(q+1)(1−ckθ)∑K
k=1

k−(q+1)(1−ckθ)
+

2
∑K
k=1 ln k k−(q+1)skθ∑K
k=1

k−(q+1)skθ
.

ForK = 1, h
(θ)
1 (q) = 0 for all q, and the sign of ∂τ̃

(θ)
1 /∂q >

0 is the sign of lnu − 1/q. It is negative for all q if u < 1.

If u > 1, ∂τ̃
(θ)
1 /∂q < 0 for q < 1/ lnu, and ∂τ̃

(θ)
1 /∂q > 0

for q > 1/ lnu. The τ̃
(θ)
1 (u, q) are minimum for q = 1/ lnu.

Comparable properties are obtained for K > 1. One has

−1/q + h
(θ)
K (q) → −∞ as q → 0, ∂τ̃

(θ)
K /∂q is firstly nega-

tive, and it is of the sign of lnu as q increases since −1/q +

h
(θ)
K (q)→ 0 as q →∞.
The critical time τ̃K(u, q) at the limit K →∞ is compared

to τ̃1(u, q), for u = 0.4 and u = 2, and as a function of q in
bottom figure (6). Here τ̃1(u, q) < limK τ̃K(u, q) for all u, q,
while, as expected, limq τ̃1(u, q) = limq τ̃K(u, q) for any K
and u.
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Figure 6: Dimensionless critical relaxation time

τ̃K = infθ τ̃
(θ)
K for K = 1 (dotted lines), and at the

limit K → ∞ (continuous lines). Top, function of u,
model (11). Bottom, function of q, model (14).

3.6 Optimal velocity model
The multi-anticipative optimal velocity model with K ≥ 1

predecessors in interaction [10] is

ẍn(t) =

K∑
k=1

ak

{
V

(
1

k
(xn+k(t)− xn(t))

)
− ẋn(t)

}
. (20)

Here (ak) ∈ RK+ . With this model, the equilibrium speed v
corresponding to the mean spacing d is v = V (d). The first



condition (6) is
∑K
k=1 ak > 0. It is always true and implies

the preliminary assumption. The second condition (6) is,
after rearranging

0 < V ′ <

(∑K
k=1 ak

)2∑K
k=1

ak
k

(1− ckθ)(∑K
k=1

ak
k
skθ
)2 (21)

(see [10, Eq. (14)]).
Note that the case K = 1 corresponds to the well know

Optimal Velocity model [1]. For this model, the condition is
V ′(d) < a1/(1 + cθ). Since 1/(1 + cθ) > 1/2, the condition
holds for all θ ∈]0, 2π[ if V ′(d) < a1/2 (see [1]).

If we assume that 1/ak = τkq with τ > 0 and q ≥ 0 a
parameter calibrating the interaction range (in a similar way
than with the inverse model (14)), one obtains the condition

0 < τV ′ <

(∑K
k=1 k

−q
)2∑K

k=1 (1− ckθ) k−(q+1)(∑K
k=1 skθk

−(q+1)
)2 =: τ̃

(θ)
K .

(22)
The mean spacing has only a role through the derivative of
the optimal speed function that is a scale parameter. Only q

is a shape parameter. The expression of τ̃
(θ)
K is comparable

to the one of the inverse model (14), see (15). Here, the time
is proportional to the square of

∑
k k
−q and converges if and

only if q > 1. In this case, the forms of the functions θ 7→ τ̃
(θ)
K

are comparable to the ones obtained with the inverse model

(14) (see in figure 2). The functions K 7→ τ̃K = infθ τ̃
(θ)
K

are also comparable with the difference that the functions
are always increasing, with no damped oscillation. With
the OV model (20), increasing the number of predecessors
in interaction results in an increase of the stability, for any
V ′(d) > 0.

The proportion of variation of the critical time τ̃K as K
varies, denoted ϕ, is not defined when q ≤ 1 since the τ̃K
diverges (it could be equal to 1). For q > 1, the proportion
tends to zero as q increases. As expected, and as the inverse
model (14), see in top figure 5, the influence of K decreases
as the model becomes short range (i.e. as q increases). The
critical time does not depends on q for K = 1. For any K >
1, the times decreases as the q increases. The stability is
negatively influenced by the range q. The constant minimal
value for K = 1 corresponds here to the limit as q increases
of the critical time τ̃K for all K > 1 (limq τ̃K(q) = τ̃1 > 0,
see in bottom figure 7). This means that, oppositely to the
inverse model (14) with u < 1, the OV model can remain
stable at the limit q →∞, for any K.

4. SUMMARY AND CONCLUSION
Linear stability conditions of uniform solutions are calcu-

lated for a second order pursuit model, with K ≥ 1 prede-
cessor in interaction. The framework is general and includes
many models used in pedestrian dynamics as well as in road
traffic flow. The conditions are explored using particular
pedestrian models for which the dynamics are the sum of
an acceleration term to the desired speed, and a repulsive
one with the predecessors, or with the well-known optimal
velocity car-following model. For the pedestrian models, the
acceleration to the desired speed is calculated using a relax-
ation process, while the repulsion is a sum over the prede-
cessors in the interaction. The desired speed is a function
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Figure 7: Top, the proportion of variation of the
critical time with the OV model (20). Bottom di-
mensionless critical time for K = 1, 5, 10, 20 and at
the limit K →∞ (thick line).

of the spacing with the optimal velocity model. Within the
different forms tested, the stability occurs for a small enough
relaxation time τ , smaller than a critical time τK .

When the repulsive force depends solely on the distance
spacing, the critical time converges as K increases, with a
damped oscillation. The role of the parameter K on the
stability threshold is not negligible when the repulsive term
does not decrease sufficiently fast as the distance spacing d
increases (i.e. force f(d) ∝ ecd or 1/dq with low c, q). On the
opposite, the proportion of variation of τK as K varies is low
when the interaction range model are short (i.e. high c or
q parameters). Comparable properties are obtained within
the car-following optimal velocity model if q > 1.

The number of predecessors in interaction in the pursuit
modeling modify the stability conditions. As expected, the
influence of the parameter depends on the form of the model.
It exists finite interaction thresholds for the stability within
distance based models. In a separate paper we will show that
it is generally not the case when the models also depends on
the speeds. The overview developed here could be useful
regarding jam waves formation, for analysis or validation of
pedestrian as well as car-following models.
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