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ABSTRACT
Many public transport operators are faced with high peak de-
mands. Often this leads to crowded vehicles and discomfort
for the passengers. The increasing use of information tech-
nologies creates new opportunities for passengers to avoid
crowding. However, the role of crowding in the dynamics
of a public transport system is not well understood. With
the definition and implementation of a model based on the
minority games, a class of games that deals with crowding
dynamics, we aim to provide public transport operators with
insights to deal with crowded situations.

We propose an extension of a minority game where multiple
resources and heterogeneous agent preferences are included.
We have conducted two simulation studies, aimed at inves-
tigating the dynamics of crowding within public transport.
In our first experiment we investigate the effect of the avail-
ability of information on crowding. In a second experiment
we study the dynamic optimization of capacities according
to a rolling stock circulation model. We find that both the
availability of information disclosed and the chosen capacity
optimization mechanism have an impact on the number of
agents utilizing resources and their payoffs. As such, these
models will allow us to develop new operator policies to deal
with crowded situations in the future.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Miscellaneous—
Coherence and coordination

General Terms
Experimentation, Management, Performance

Keywords
capacity, coordination, information, minority games, public
transport, resource allocation

1. INTRODUCTION
Operators in public transport are often faced with peak

demands, typically during the morning and afternoon rush
hours. As a result, vehicles can become very crowded, greatly
reducing the comfort experienced by the passengers. As in-
formation technologies enable passengers to have more direct
communications with the public transport operators and
have more freedom to work at different locations, passengers
are gaining more opportunities to avoid crowded situations.
However, the impact of crowding on passenger behavior and
the interaction between railway operations and passengers is
not well understood. In this paper we develop a model, based
on the concept of minority games, that allows us to study the
dynamics of crowding in public transport through computa-
tional experiments and evaluate the impact of operational
and behavioral models on a number of performance measures,
most importantly the utilization of available capacities.

Since the “El-Farol Bar Game” [1] was first introduced in
1994, the concept of the minority game has received a lot of
attention from researchers. One of the great strengths of this
model lies in the simplicity of its description: a population
of agents have to decide every Thursday night whether to go
to the bar or not. Once they go the bar, they have a positive
payoff if less than 60% of the population goes to the bar,
while they have a negative payoff if it is too crowded. As
everyone makes this choice every Thursday, the El-Farol Bar
Game has an iterative nature. While historic information
is provided, the interesting aspect comes from the fact that
there is no direct coordination between the agents.

Issues related to limited availability of resources and a lack
of explicit coordination occur in many real world systems.
The applications of these models include car traffic [2], con-
gestion in computer networks [8] and financial markets [4].
While these types of applications were considered earlier from
a game theory perspective, most notably under the name of
congestion games [11], the novelty from the “El-Farol Bar”
study was the application of a complex systems approach
enabled by simulation of a repeated game, while game theory
is mostly concerned with the properties of equilibria.

In this paper, we focus on minority games where the op-
erator cannot control agent behavior, but has control over
the disclosure of information and the system capacities. The
main application domain is public transport systems, where
passengers share vehicles depending on their chosen route
and time of travel. If a connection is operated frequently,
passengers with some flexibility in their schedule can try to
avoid crowded situations by shifting time of travel. Since



it is reasonable that a passenger does not want to travel at
any time, we introduce the concept of individual choice sets
representing the acceptable choices. To our best knowledge,
this type of heterogeneity of the choice sets has not been
studied in the context of minority games before.

Within public transport systems, there are many oppor-
tunities to provide passengers with additional information:
many stations and vehicles have screens with travel infor-
mation, and many passengers use smart phones to receive
information during their journeys. The increasing adoption
of smart card ticketing systems allows operators to have
accurate data on the utilization of each vehicle. As oper-
ators in railway and metro systems can extend or shorten
the trains [5] and bus operators can employ different vehicle
sizes, adaptive capacity allocation is becoming a possibility.

The main observation in the original “El-Farol Bar Game”
simulations [1] is that even though individual agents keep
switching their preferred predictive model, the aggregate
utilization of the bar converges to the efficient level. In
order to explain this phenomenon the minority game was
introduced, where the utilization history was replaced with
a history of binary values indicating whether the bar was
overcrowded or not. The main idea of this approach is
that the set of all possible deterministic strategies can be
characterized so that methods from statistical mechanics can
be applied [3].

The remainder of this paper is organized as follows: in
Section 2 we introduce our class of minority games. In
Section 3 we discuss the architecture of our simulation and
agents. This simulation framework is then applied in order
to investigate the effect of different information policies in
Section 4. In a second simulation study we evaluated the
effect of rolling stock optimization in the context of public
transport (Section 5). In Section 6 we show that the inclusion
of individual choice sets and scoring functions leads to NP-
hardness of maximizing the efficiency of a given system. We
discuss our findings and plans for future research in Section 7.

Related Work
A variation of the minority games are the resource allocation
games, introduced by [7]. This extension of minority games
introduces multiple resources and capacities that vary over
time. Conditions are given under which the agents can use
a social network structure in order to adapt efficiently to
variations of the capacities. The fluctuations of the capac-
ities considered in the studies associated with the resource
allocation games only depend on time and do not depend
on the distribution of agents over the resources during the
game.

While the body of knowledge on learning techniques for
agents in minority games [10] is very useful for the engineer-
ing and design of artificial agents, it is a question whether
it is applicable within systems where real humans are in-
volved. Selten et al. [13] conducted a laboratory experiment
involving route-choice. The participants could be divided
into three groups: participants who had the tendency to
switch away from a road if it was congested during the pre-
vious round, participants who had the tendency to stay on
their current road regardless of it being congested during
the previous round, and participants who were harder to
classify. Although the participants showed different types of
behavior, the distribution of the participants over the roads
approached the equilibrium very closely.

2. A MODEL FOR CROWDING DYNAMICS
The general scheme of model is that in each round every

agent decides whether he will use one or more resources or
refrains from doing so. Using a resource gives the possibility
to gain a positive payoff or a negative payoff depending on
the utilizations encoutered. If he does not use any resource,
the payoff will be neutral, i.e. zero.

We define symbols for the resources, the agents and payoffs.
The resources will be defined in the following way:

• A set R := {1, 2, . . . ,m} of m resources.

• A soft capacity function cap : R→ Z+.

Thus there are m resources, each of which having an
associated capacity. Note that we define soft capacities: they
can be violated, but everyone in such a situation should
have a negative payoff. Based on the capacity we define the
utilization of a resource as the fraction of its capacity that
is occupied. The typical example in public transport is the
number of passengers divided by the number of seats. As
the game is played iteratively, the transport operator can
adapt the capacities based on observations recorded during
earlier rounds of the game. We also define the preferences
and payoffs of the agents that play the game:

• A set N = {1, 2, . . . , n} of n agents.

• A non-empty collection Ci of subsets of R.

• A scoring function si : Qm × Ci → R for each agent
i ∈ N

During each round, every agent should choose one of the
options in its choice set. We assume that every choice set
contains the empty set as a neutral option, but this is not
strictly necessary. We can describe the outcome of a round
based on the choices made by all agents. If an agent i chooses
to use a set of resources c ∈ Ci, we set the indicator variable
xic to 1. The set of all vectors of xic’s describing a valid
outcome is thus defined by

O = {x | ∀i ∈ N :
∑
c∈Ci

xic = 1, xic ∈ {0, 1}}. (1)

Given the outcome vector x for a round, we can calculate
the utilization of the resources. We define a vector u(x) ∈ Qm

that contains an entry for each resource. The entry ur(x) for
resource r ∈ R is calculated as follows:

ur(x) =

∑
i∈N

∑
c∈Ci:r∈c

xic

cap(r)
. (2)

While in principle si can be a general scoring function, for
ease of analysis we will use the restricted class of threshold
based scoring functions. These scoring functions have a payoff
of −1, 1 or 0 depending on a individual threshold θi and
the maximum encountered utilization. The scoring function
itself is then defined as follows:

si(u, c) =


0 if c = ∅,
1 if max

r∈c
ur ≤ θi,

−1 otherwise.

(3)



Performance Measures
Since we want to analyze the behavior of an agent population,
we will introduce some measures that are of analytic interest
and can be recorded during a simulation. We define the #
symbol to denote the cardinality of a set (e.g. #{6, 9} = 2).
Given an outcome x ∈ O during any of the rounds of the
game, we can calculate the following observations:

• utl(x) = 1
n

#{i ∈ N : xic = 1, c 6= ∅}, i.e. the fraction
of agents utilizing a resource.

• pos(x) = 1
n

#{i ∈ N : xic = 1, si(y, c) > 0, y = u(x)},
i.e. the fraction of agents with a positive payoff.

• posc(x) = pos(x)
utl(x)

is the fraction of agents with a positive

payoff among the agents who utilize a resource.

• avg(x) = 1
n

∑
i∈N

∑
c∈Ci

si(u(x), c)xic is the average payoff

of the agents.

3. ARCHITECTURE OF THE AGENTS AND
SIMULATION

Given an instance of the game, a simulation still depends
on two more aspects: the way the agents make their decisions
and to which extent the agents can observe the outcome of
the previous rounds. As we want to be able to evaluate
the effect of different types of agent behavior, we will allow
different types of agents in the population. We will introduce
a number of types in Section 3.1. We first define the main
steps that will be executed in each round of the simulation:

1. Let every agent i ∈ N choose one option c ∈ Ci from
its choice set according to its agent type.

2. Calculate the outcome vector x and corresponding uti-
lization vector u(x) accordingly.

3. Let every agent i ∈ N observe, learn and process its
score si(u(x), c) based on its agent type.

4. The operators lets every agent i ∈ N observe, learn and
process information based on the active information
policy and the utilization vector u.

From these steps we can see the necessary ingredients for
an agent implementation within this simulation scheme: an
agent needs a choice function and can optionally implement
a method to process incoming scores and information.

3.1 Agent Types
The most simple agent type is the random agent, who

selects a choice from its choice set uniformly at random in
each round. This agent type is useful for both benchmarking
purposes, validating the simulation architecture analytically,
and to model noisy behavior within the population.

The more complicated agent types will make decision based
on observations during earlier rounds of the game. For these
agent types, step 4 of the simulation process in a round can
have an effect on step 1 in the next round. The number of
rounds the agents look back is referred to as the memory
length. An important finding in the minority game model
is that the most efficient utilization is reached when the
memory length of the agents is proportional to the logarithm
of the total number of agents [12].

The second type of agent, the average payoff agent, applies
a simple reinforcement learning heuristic. Reinforcement
learning strategies have received notable attention in the
literature, and we take one of the most simple ones as an
example. As such, our average payoff agents perform ex-
ploration during 10% of the rounds by making a random
choice, while they exploit the observed average payoff values
during 90% of the rounds. In case multiple choices have the
best average payoff, the tie is broken by picking one option
uniformly at random.

A variation of average payoff agent is the average utilization
agent, who uses the same reinforcement learning heuristic
to learn the average utilization of the resources. The main
difference is that this agent uses the information received to
learn the average utilization and pick the choice with the
lowest average utilization, or the neutral option if this choice
has still higher average utilization than its threshold.

The last type of agent, the predictive agent, aims to predict
future utilizations in order to find the best choice. If the
agent can predict future utilizations, the agent can generate
a fictitious utilization vector and evaluate the expected score
of each choice. This agent type is similar to the one studied
in original El Farol Bar paper [1]. In a round with index t,
the agent checks which of its personal heuristics was most
accurate in round t−1 and uses this one to predict utilizations
in round t. As our model introduces the concept of multiple
resources, there can be situations where an agent does not
know all historic utilizations of each resource. We calculate
the accuracy of each heuristic based only on the information
that is available. As availability of utilization information
is defined on the agent level, an agent can compare the
heuristics using the same data set.

We implemented the following predictive heuristics: repli-
cate the oldest utilization in memory, take the average of the
utilizations in memory or fit a linear regressive model on the
utilizations in memory.

3.2 Information Policies
At the end of each simulation round, we let each agent

process information and observations on the utilization of
the resources. We define a unit of information as a 3-tuple
(t, r, u) consisting of the round of the game t, a resource r
and a utilization vector u. As the agent can have multiple
resources in its choice set, it should be able to receive and
process multiple pieces of information each round. In general,
an information policy is a set of rules that determine the
information offered to each agent in each round. While there
are very many information policies possible, we propose four
basic ones.

In public transport, the fact that an agent is using a
resource allows it to observe the utilization. Thus in our
most basic information policy, private information, an agent
receives exact information for the resources in its choice.

On top of private information, the entity or agent control-
ling the resources could monitor the utilizations and try to
attract more agents in case a resource r has a low utiliza-
tion, say less than 40% of its capacity. In such a situation
the information policy can state that additional information
regarding resource r should be provided to all agents. We
will refer to this type of policy as adaptive information.

In some situations there are information systems that
provide information on the crowding of a resource. A real life
example one can think of is a smart phone application of a



Table 1: Results of the simulation study where different information policies are evaluated. The minimum, average and
maximum utl (fraction of agents utilizing a resource) and posc (fraction of agents who have a positive payoff among those that
utilize a resource) values measured for each of the 66 population mixtures are reported.

utl (n = 50) private adaptive estimate full
Minimum 0.63 0.75 0.75 0.75
Average 0.77 0.90 0.91 0.91
Maximum 0.91 0.97 0.99 0.99

posc(n = 50) private adaptive estimate full
Minimum 0.90 0.90 0.89 0.87
Average 0.95 0.93 0.91 0.90
Maximum 0.99 0.97 0.93 0.92

utl (n = 100) private adaptive estimate full
Minimum 0.45 0.66 0.70 0.73
Average 0.60 0.70 0.73 0.77
Maximum 0.75 0.75 0.82 0.85

posc (n = 100) private adaptive estimate full
Minimum 0.46 0.46 0.41 0.30
Average 0.77 0.65 0.60 0.48
Maximum 0.98 0.84 0.72 0.54

utl (n = 200) private adaptive estimate full
Minimum 0.20 0.40 0.46 0.51
Average 0.42 0.48 0.52 0.56
Maximum 0.75 0.75 0.75 0.78

posc (n = 200) private adaptive estimate full
Minimum 0.02 0.02 0.02 0.02
Average 0.49 0.35 0.27 0.19
Maximum 0.94 0.68 0.42 0.26

public transport operator, that shows one, two or three icons
based on the forecasted crowdedness of a vehicle, reducing the
utilization level provided to the agent to a few discrete values.
This idea is capture by the estimate information policy, where
the utilization of each resource is rounded up to either 0,
1
4
, 2
4
, and so on, similar to the 3 symbol crowding indicators

provided by some operators. This rounded utilization is then
provided to all agents. We should take care that we send the
rounded utilizations in case the agent did not observe the
utilization by itself, and use exact utilization otherwise.

In the final template, we send out exact information on
every resource to every agent in each round – thus in this
situation the agents have full information.

4. EVALUATING INFORMATION POLICIES
In our first experiment, we evaluate the four information

policies in a population of agents that use public transport
to travel from a single origin to a single destination, but
can choose for different times of travel. As such their choice
sets contain only singleton resources, reflecting the depar-
ture times a public transport service is scheduled and the
empty set as a neutral option, reflecting a journey by car
or staying at home. We find that increasing the available
information leads to a greater number of agents utilizing the
public transport system, but at the cost of the average payoff.
However, the magnitude of this effect is influenced by the
ratio of population size and available capacity.

4.1 Experimental Setup
In our experiments, we work with m = 10 resources rep-

resenting the departure times. Every choice set Ci contains
∅ and 3 different singleton sets picked uniformly at random
from R without replacement. For each agent i we use a
threshold based scoring function with θi ∈ { 5

10
, 6
10
, . . . , 1}

picked uniformly. The capacity of each resource is fixed to
10, i.e. cap(r) = 10.

As we have 100 units of capacity available each round,
we consider a high capacity scenario with n = 50 agents,
a regular scenario with n = 100 agents and a low capacity
scenario with n = 200 agents. For each of these scenarios,
we vary the population by picking all pairs p, q ∈ 0, 1, . . . , 10
such that p+ q ≤ 10. Our population then consists of 10p
random agents, 10q average utilization agents and 10(10−
p− q) predictive agents. In total 66 population mixtures are

evaluated. For each mixture of agent implementations we
regenerate the choice sets and thresholds 100 times. For a
given instance of the choice sets we run the experiment 25
times, regenerating the predictive agents 5 times if they are
part of the population. Thus, in total we run 2500 simulations
per combination of population mixture and population size.
As we want to ignore the warm-up period of the simulation
and like to interpret the rounds as days, the measures are
recorded from round 10 to 40 during each simulation run.

The predictive agents each have an individual randomly
selected set of 3 random predictive heuristics from the fol-
lowing list: average heuristic with memory lengths of either
4, 5, 6 or unlimited, linear regression with memory lengths
of 4, 5, 6 or unlimited, replicate the oldest observation with
memory length either 1, 2 or 3.

4.2 Results and Discussion
The results of our simulation experiments are presented

in Table 1. If we look at the left column of Table 1, we
can verify that when we increase the level of information
provided to the agents, the number of agents utilizing a
resource increases. If we look at the average values from
private to adaptive, we can see that the 0.13 increase for
n = 50 scenario is greater than the 0.06 increase for n = 200.
These numbers suggest that the effect of information depends
on the units of capacity available per agent in the population.

If we look at the fraction of agents utilizing a resource
with a positive payoff (this can be interpreted as customer
satisfaction) in the right column of Table 1, we can see that
increasing the level of information decreases the posc value.
This seems intuitive, since adding information attracts more
agents, and having more agents increases the likelyhood
of crowding. Again, the amount to which the posc value
decreases when we move from the private to the adaptive
case is impacted by the amount of capacity available per
agent: for n = 50 the decrease of 0.02 is less dramatic than
the 0.14 decrease of in the n = 200 case.

For future work we will investigate whether better infor-
mation policies can be designed. The are also questions
regarding the effect of noise in communications, such as tech-
nical problems at the side of the operator or agents ignoring
information sometimes. We are curious to learn whether
such noise could lead to less correlated agent behavior and
whether this can lead to better system efficiency.



Figure 1: The network of trips along a line during the 16
time slots with the possible movements of rolling stock units
outside the regular trips represented by dashed lines.

5. CAPACITY OPTIMIZATION IN PUBLIC
TRANSPORT

In our second experiment, we want to evaluate the effect
of rescheduling capacities on the crowding dynamics in the
system. Consider a public transport scenario where a train
moves back and forth a line of 5 stops. The train drives 8 full
cycles per day and as moving along the line in one direction
gives us 4 trips between the stops, the timetable consists of
4 ·2 ·8 = 64 trips are offered each day. As individual travelers
want to travel between two stops that are not necessarily
connected by a single trip, a journey can consist of one or
multiple trips. We will assume passengers always want to
travel in the direction of their destination and as such for
each origin-destination (OD) pair there are 8 different time
slots at which passengers can make their journeys.

In order to facilitate the flow of passengers, the trains
need to be long enough in order to allow comfortable trans-
portation. To achieve this, the operator monitors utilization
of vehicles and adapts the assigned number of rolling stock
units to each train accordingly. The operator can decide how
often the observed utilizations are evaluated to build a new
rolling stock model. In this experiment, we will assume that
this will happen periodically. The number of rounds after
which the operator produces a new rolling stock schedule
will be referred to as the reschedule period, denoted by an
integer k.

5.1 Capacity Allocation
As the use of rolling stock units determines a significant

amount of the operational costs of a public transport operator,
they try to monitor the utilization of the train vehicles and
adapt the capacities if necessary. The typical model used
to determine the rolling stock allocation in these situations
is by constructing the network of possible train movements,
specifying a minimum demand on the arcs that correspond
to passenger trips and look for a minimum cost circulation [6]
based on operational costs.

We implemented a module in the simulation that represents
an operator which dynamically optimizes demand. During
each round of the simulation, train utilization for each trip
is recorded. After k rounds, the demand of a trip is set to
µ+ 2σ, where µ is the mean utilization and σ its standard
deviation during those k rounds. We chose this rule because
similar rules are employed by real operators. The capacities
of each trip are then calculated according to a rolling stock
circulation, where we define a cost of 1000 per unit used and a
costs of 1 for moving a unit between consecutive stops on the
line. These numbers represent that buying and maintaining
rolling stock units is a lot more costly than moving them
around. We also assume that storing a unit at a station
does not impose any costs. As a result, the minimum cost
rolling stock circulation will minimize the number of units
required before minimizing the movement costs, given that
the defined demand must be met.

We use a minimum cost circulation algorithm [6] (which
shares quite a lot of similarity with the well known augment-
ing path methods for max flow) to obtain the capacities.
Although more efficient algorithms exist for this problem,
the augmenting path method is straightforward to implement
and fast enough for our simulations. The input network is vi-
sualized in Figure 1. The straight arcs represent movements
between the stops and must carry the determined demands.
The circular arcs represent storing a vehicle at a stop. The
overnight arcs represent the purchase costs of the vehicles
and the overnight balancing movements.

While the algorithms employed by operators need to take
many different types of rolling stock and regulations into
account [5], for reasons of simplicity and interpretability we
assume that we have only one type of rolling stock with a
nominal capacity of 10 seats.

5.2 Experimental Setup
In order to set up the simulation, we define a resource set

that consists of the trips, so based on the 5 stops and 16
timeslots, we get m = 64 resources. The choice set of an
individual agent is generated as follows: we pick two stops
o 6= d from among the five stops. By choosing o as the origin
and d as the destination, the direction along the line is defined.
We then pick 3 from the 8 available time slots corresponding
to this direction in order to define the acceptable journeys.
The choice set then consists of the empty set and the sets of
trips corresponding to the journeys drawn randomly. Again
we work with threshold based scoring functions where the
threshold is picked uniformly from { 5

10
, 6
10
, . . . , 1}.

For the purpose of simplicity, we use only one type of agent
during this experiment: the average payoff agent. One of the
reasons to choose this agent implementation is that software
packages for dynamic traffic equilibrium computations with
feedback use this approach. We pick the number of agents
simulated as n = 1000. The reason to take a relatively large
agent population is because we have 64 trips and as each
trip should have at least one unit of rolling stock available,
the available capacity is at least 640. In order to have a
high probability to facilitate all the demand during the first
rounds of the simulation, we set the initial demand of rolling
stock units for each trip to 5. We also checked initial rolling
stock counts of 1 and 10 units and our findings were robust
under these variations.

Our goal is to evaluate the effect of different rescheduling
periods. As the demand observed depends on the length of



Table 2: Results of the simulation study where the effect of rolling stock optimization on average payoff, operator costs and
rolling stock units required is evaluated. The measures at round 100 of each simulation are reported, for different rescheduling
periods (k) of 1, 5 and 10.

k = 1 min mean (±std.) max
utl 0.38 0.42 (±0.02) 0.46
posc 0.60 0.73 (±0.05) 0.84
avg 0.08 0.19 (±0.04) 0.28
cost 2092 2532 (±498.5) 3112
units 2 2.43 (±0.497) 3

k = 5 min mean (±std.) max
utl 0.58 0.60 (±0.015) 0.66
posc 0.74 0.85 (±0.03) 0.92
avg 0.28 0.43 (±0.04) 0.50
cost 3166 4120 (±314) 4120
units 3 3.9 (±0.31) 5

k = 10 min mean (±std.) max
utl 0.62 0.66 (±0.01) 0.70
posc 0.76 0.86 (±0.03) 0.92
avg 0.36 0.48 (±0.04) 0.56
cost 4188 4219 (±142) 5208
units 4 4.02 (±0.14) 5

the rescheduling period, we evaluated periods of 1 round,
5 rounds and 10 rounds. For each of these rescheduling
policies, we generate 50 agent populations of choice sets with
corresponding thresholds. For each population we then run
2 simulations of 50 rounds.

5.3 Results and Discussion
The time series distributions of the observed values of

utl and posc during the 100 simulation runs for each of the
three policies are presented in Figure 2. The distributions
of average payoffs, the operational costs (according to the
minimum cost rolling stock circulation) and the number
of rolling stock units utilized during the last round of the
simulation are presented in Table 2.

As we increase the length of the period, we can observe
that utl increases. If the reschedule period is 1 round, we
can observe from Figure 2a that it converges to a mean of
0.42. For a reschedule period of 5 rounds it converges to
a mean of 0.6 (Figure 2c) and for a reschedule period of
10 rounds it converges to a mean of 0.66 (Figure 2e). One
possible explanation for the fact that longer periods give a
higher value for utl is that a longer reschedule period has
the potential to yield a more stable mean and possibly more
accurate standard deviation (except for the case where the
period is 1; then the standard deviation is always 0). As
the mean and standard deviation have direct effects on the
demand and thus the capacities that are calculated, they
seem likely causes for the observed behavior.

For the fraction of agents that utilize a resource and have
a positive payoff posc, we can observe that it converges to a
value of 0.73 for a reschedule period of 1 round (Figure 2b), to
a value of 0.85 for a reschedule period of 5 rounds (Figure 2d)
and to a value of 0.86 for a reschedule period of 10 rounds
(Figure 2f). The 1 round scenario has a higher standard
deviation than the other scenarios .

While both the utl and posc have higher averages for longer
reschedule periods, Figure 2 also shows slower convergence
for longer reschedule periods. Table 2 also suggests that
longer reschedule periods lead to higher costs and a higher
number of rolling stock units required. However, this can be
explained by the increase of the utl value. A final interesting
observation in Table 2 is that the average payoff for the
agents also increases if we use longer periods.

Our results suggest that there are many disadvantages for
the single round reschedule period. Increasing the period
may lead to higher costs, but the number of passengers
using one of the trains increases as well, which can lead
to extra revenue. For future research we aim to search for
different approaches to determine the demand for the rolling
stock circulation based on the utilizations observed in the
simulation. A different approach to the µ+ 2σ rule would
be to adapt demand based on observed scores.

6. COMBINATORIAL ASPECTS
In the original “El-Farol Bar” model, it is not difficult to

see that the ideal utilization of the bar lies at 60%, because
all agents have the same payoff. In our extension it is not
easy to determine the ideal utilization, as we are allowed
to have agents with different scoring functions assigned to
the same resource. As a result, it can be the case that for a
single resource, some agents have a positive payoff and others
have a negative one. The individual choice sets complicate
matters even further. As a result, it is a combinatorial
problem to maximize pos(x). We will show this by proving
the NP-completeness of the related decision problem.

Theorem 1. For a given instance of the game, deciding
whether there exists a valid outcome x ∈ O such that all
agents have a positive payoff (i.e. whether pos(x) is equal to
1) is NP-complete, even if we have threshold scoring func-
tions with 2 different thresholds and we allow only singleton
resources in the choice sets.

Proof. We will show NP-hardness by reduction from the
k–Set Cover problem [9]. In the k–Set Cover problem
we are given a collection A = {A1, . . . , An} of n sets, a set
of all elements U =

⋃
i∈N Ai and a positive integer k. We

have to decide whether there exists a subset A′ ⊆ A such
that |A′| ≤ k and

⋃
A∈A′ A = U .

We now introduce |U | regular agents and |A| − k grumpy
agents. We introduce a mapping between the sets in A and
the resources. Each element in e ∈ U is represented by a
regular agent which has a choice set that consists of singleton
resources corresponding to the sets in A containing e. The
grumpy agents have a choice set with a singleton for every
resource. We define the payoff functions such that the regular
agents have a positive payoff as long as they have chosen
a resource, and the grumpy agents have a positive payoff
if they are exclusively assigned to a resource (if we fix all
cap(r) = 1, then θi = n if i is a regular agent and θi = 1
if i is a grumpy agent). As a result the grumpy agents can
only have a positive payoff if they are assigned to resources
in such a way that all the other agents can be assigned to
the remaining resources. By construction of the choice sets,
this is only possible if the remaining k resources that are not
utilized by the grumpy agents correspond to sets that are
able to cover all elements. Thus, we have reduced the k-Set
Cover problem into our decision problem with 2 threshold
scoring functions and singleton choice sets.

NP-completeness then follows from the fact that given
a vector x, we can easily check whether it is feasible and
whether indeed pos(x) = 1.

In order to understand how the reduction works, we provide
an example in Table 3. Here the A’s and e’s represent
the sets and elements of the k-Set Cover instance. The



(a) utl when rescheduling period k = 1 (b) posc when rescheduling period k = 1

(c) utl when rescheduling period k = 5 (d) posc when rescheduling period k = 5

(e) utl when rescheduling period k = 10 (f) posc when rescheduling period k = 10

Figure 2: Results of the capacity rescheduling experiments. The dark line shows the mean over all 100 experiments, the dark
gray area is one standard deviation away from the mean and the light gray area shows the minimum and maximum values
observed.



Table 3: An example reduction from k-Set Cover to a game instance.

e1 e2 e3 e4 e5
A1 × ×
A2 × ×
A3 × ×
A4 × ×
A5 × ×
(a) An example instance of a k-Set Cover problem.

Agent Ci

a1 {∅, {1}, {5}}
a2 {∅, {1}, {3}}
a3 {∅, {3}, {4}}
a4 {∅, {2}, {4}}
a5 {∅, {2}, {5}}
g1 {∅, {1}, {2}, {3}, {4}, {5}}
g2 {∅, {1}, {2}, {3}, {4}, {5}}

(b) The corresponding choice sets for k = 3

corresponding game instance contains the a agents for the
elements and 5 − k = 2 grumpy agents denoted by the g
agents. For k = 3, we can assign the two grumpy agents to
resource 4 and resource 5, as the other agents are covered by
the remaining resources. If we would now change k to 2, we
would need to add an additional grumpy agent. However, we
cannot give a positive payoff to both this additional grumpy
agent and all the regular agents at the same time. This
is consistent with the fact that there is no solution for the
k-Set Cover instance if k = 2.

7. CONCLUSION AND FUTURE WORK
We have evaluated the effect of information disclosure

and capacity optimization in a minority game designed to
study crowding effects in public transport. The inclusion of
heterogeneous agents poses many new challenges. From the
theoretical perspective there are questions to what extend
observations for the original minority game, such as the
relation between memory length and efficiency, still apply.
From the practical perspective, the question is whether an
operator can influence and manage the cooperation of the
agents in order to stimulate the efficient utilization of the
vehicles. We have conducted two simulation studies where
we focused on the practical challenges. In the first study
we evaluate the effect of different information policies in a
scenario where every agent uses at most a single trip every
round. We find that disclosing more information attracts
more agents, but that this comes at the cost of lower payoffs.
This trade-off is influenced by the number of agents and the
available capacity in the system.

In the second simulation study, we evaluate the effect of
adaptive capacity management in the context of railway
transportation. Here the agents make a journey along a
line. They have to choose a time to travel between an
individually assigned origin and destination stop every round.
As such journeys can cross multiple stops and thus overlap
on the line, more complex patterns of agent interaction can
emerge. We find that the number of rounds utilizations are
recorded before capacities are re-optimized has an impact on
the number of agents utilizing the system and their payoffs.
Rescheduling every round seems to lead to worse system
performance than rescheduling every 5 or 10 rounds.

Our studies show that we are able to evaluate and compare
the effects of different policies for information and capacity.
The question remains whether we can improve on the policies
we evaluated. We think that policies that act on agents that
repeatedly have a low payoff are an interesting area for further
research.
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