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ABSTRACT
Demand-responsive transport (DRT) systems provide flexi-
ble transport services for passengers that request door-to-
door rides in shared-ride mode without fixed routes and
schedules. One has to design cost-sharing mechanisms for
offering fare quotes to potential passengers so that all pas-
sengers are treated fairly. The main issue is how the oper-
ating costs of the DRT system should be shared among the
passengers (given that different passengers cause different
amounts of inconvenience to the other passengers), taking
into account that DRT systems should provide fare quotes
instantaneously without knowing future ride requests. We
propose a novel cost-sharing mechanism, called Proportional
Online Cost Sharing (POCS), that provides passengers with
upper bounds on their fares immediately after their arrivals,
allowing them to accept their fare quotes or drop out. We
then demonstrate that POCS has attractive properties for
both shuttle providers and passengers.

1. INTRODUCTION
Demand-responsive transport (DRT) systems provide

flexible transport services where individual passengers re-
quest door-to-door rides by specifying their desired start and
end locations. Multiple shuttles service these requests in
shared-ride mode without fixed routes and schedules. DRT
services are more flexible and convenient for passengers than
buses since they do not operate on fixed routes and sched-
ules, yet are cheaper than taxis due to the higher utilization
of transport capacity. In the United States, DRT services
are commonly used to service the transport needs of disabled
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and elderly citizens and have experienced rapid growth, for
example, in the form of dial-a-ride paratransit services man-
dated under the Americans with Disabilities Act, while the
National Transit Summaries and Trends report that typical
DRT systems are highly subsidized.

In this paper, we propose a novel cost-sharing mechanism,
called Proportional Online Cost Sharing (POCS), that pro-
vides passengers with upper bounds on their fares immedi-
ately after their arrivals, allowing them to accept their fare
quotes or drop out. We then demonstrate that POCS has
attractive properties for both shuttle providers and passen-
gers. How passengers should share the operating cost in an
online setting, where knowledge of future ride requests is
missing, is a non-trivial problem for the following reasons:
First, passengers do not submit their ride requests at the
same time but should be given incentives to submit their
ride requests as early as possible to allow the DRT systems
more time to find routing solutions that can offer subsequent
passengers lower fares due to synergies with the early ride re-
quests, which might allow them to service more passengers.
Second, passengers have different start and end locations
and thus cause different amounts of inconvenience to the
other passengers, which should be reflected in the fares. Fi-
nally, passengers should be quoted fares immediately after
submitting their ride requests. This gives passengers cer-
tainty about the cost of service and allows the DRT system
to plan routes better knowing which passengers have com-
mitted to participate. This requires DRT systems to make
instantaneous and irreversible decisions despite having no
knowledge of future ride requests [2].

2. ONLINE COST SHARING
In this section, we define the online cost-sharing problem

for demand responsive transport (DRT) systems, provide
an example, discuss existing cost-sharing mechanisms and
some of their shortcomings, and finally derive a list of desir-
able properties for online cost-sharing mechanisms for DRT
systems.

2.1 Problem Definition
DRT systems provide flexible transport services where

individual passengers request door-to-door rides. Multi-
ple shuttles service these requests without fixed routes and
schedules. Passengers share shuttles. For example, after a
passenger has been picked up and before it is dropped off,



other passengers can be picked up and dropped off, result-
ing in a longer ride for the passenger. Passengers need to
pay a share of the operating cost. Passengers arrive (that
is, submit their ride requests) one after the other by speci-
fying their desired start and end locations. The arrival time
of a passenger is the time when it submits its ride request.
In case the passenger decides to delay its arrival, we distin-
guish its truthful arrival time, which is its earliest possible
arrival time, from its actual, perhaps delayed, arrival time.
We assume, for simplicity, that all passengers arrive before
the shuttles start to service the passengers. We also assume,
without loss of generality, that exactly one passenger arrives
at each time k = 1, . . . , t, namely that passenger π(k) arrives
at time k under arrival order π, where an arrival order is a
function that maps arrival times to passengers.

Definition 1. For all times k and all arrival orders π
with 1 ≤ k, the alpha value απ(k) of passenger π(k) quan-
tifies the demand of its request, that is, how much of the
transport resources it requests. We assume that it is positive
and independent of the arrival time of the passenger.

These assumptions are, for example, satisfied for the
shortest point-to-point travel distance from the start loca-
tion to the end location of a passenger, which is the quantity
that we use in this paper as its alpha value.

Definition 2. For all times t and all arrival orders π
with 1 ≤ t, the total cost totalcosttπ at time t under ar-
rival order π is the operating cost required to service pas-
sengers π(1), . . . , π(t). We define totalcost0π := 0 and as-
sume that 1) the total cost is non-decreasing over time,
that is, for all times t and t′ and all arrival orders π with

t ≤ t′, totalcosttπ ≤ totalcostt
′
π ; and 2) the total cost at

time t is independent of the arrival order of passengers
π(1), . . . , π(t), that is, for all times t and all arrival orders π
and π′ with 1 ≤ t and {π(1), . . . , π(t)} = {π′(1), . . . , π′(t)},
totalcosttπ = totalcosttπ′ .

These assumptions are, for example, satisfied for the min-
imal operating cost, which is the quantity that we use in this
paper for the total cost. The DRT system can accommodate
advanced features, such as operating times and capacities of
shuttles and time constraints of passengers, as long as it can
determine total costs that satisfy the assumptions. The as-
sumptions are typically not satisfied if passengers can arrive
after the shuttles have started to service passengers since
the shuttle locations influence the total cost. We initially
assume for simplicity in the theoretical part of this paper
that the DRT system can easily calculate the total cost at
any given time.

Definition 3. For all times k and all arrival orders π
with 1 ≤ k, the marginal cost mcπ(k) of passenger π(k) under
arrival order π is the increase in total cost due to its arrival,
that is, mcπ(k) := totalcostkπ − totalcostk−1

π .

Definition 4. For all times k and t and all arrival orders
π with 1 ≤ k ≤ t, the shared cost costtπ(k) of passenger π(k)
at time t under arrival order π is its share of the total cost
at time t.

The DRT system provides a (myopic) fare quote to a pas-
senger immediately after its arrival. The fare quoted to pas-
senger π(k) immediately after its arrival at time k is costkπ(k).
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Figure 1: DRT Example 1

Table 1: DRT Values
k = 1 k = 2 k = 3 k = 4

π(k) = P1 π(k) = P2 π(k) = P3 π(k) = P4

Alpha Value: απ(k) 2 2 4 2

Total Cost: totalcostkπ 40 120 120 160
Marginal Cost: mcπ(k) 40 80 0 40

(A fare quote of infinity means that the passenger cannot be
serviced.)

Definition 5. For all times k and all arrival orders π
with 1 ≤ k, the fare limit wπ(k) of passenger π(k) is the
maximum amount that it is willing to pay for its requested
ride.

Passenger π(k) drops out and is not serviced if its fare
limit wπ(k) is lower than its fare quote, that is, wπ(k) <

costkπ(k). In this case, the DRT system simply pretends that
the passenger never arrived, which explains why we assume,
without loss of generality, that all passengers accept their
fare quotes. When the passenger accepts its fare quote and
is serviced, its fare is costtπ(k) (which is not guaranteed to
equal its fare quote).

2.2 Demand-Responsive Transport Example
We use the DRT example in Figure 1 to illustrate typi-

cal cost-sharing mechanisms. There is one shuttle that can
transport up to four passengers and starts at the star. The
shuttle incurs an operating cost of 10 for each unit of dis-
tance traveled and needs to return to its initial location.
There are four passengers with arrival order π(1) = P1,
π(2) = P2, π(3) = P3 and π(4) = P4. For example, Pas-
senger P3 requests a ride from location B to location D, as
shown in Figure 1. All passengers accept all fare quotes.
Table 1 shows the alpha value of each passenger, the total
cost after the arrival of each passenger and the marginal
cost of each passenger. For example, the alpha value of Pas-
senger P3 is the shortest point-to-point travel distance from
its start location B to its end location D. Thus, απ(3) = 4.
The total cost at time 3, after the arrival of Passenger P3,
is 10 times the minimal travel distance of the shuttle re-
quired to service Passengers P1, P2 and P3 and return to its
initial locations. Thus, totalcost3π = 120 since the shuttle
has to drive from location A (to pick up Passenger P1) via
location B (to drop off Passenger P1 and pick up Passen-
ger P3) and location C (to pick up Passenger P2) to loca-
tion D (to drop off Passengers P2 and P3) and to return
to its initial location A. The marginal cost of Passenger
P3 is the increase in total cost due to its arrival. Thus,
mcπ(3) = totalcost3π − totalcost2π = 120 − 120 = 0 since the
total cost remains 120.

2.3 Typical Cost-Sharing Mechanisms
Online cost-sharing mechanisms determine the shared

costs in an online setting, where knowledge of future arrivals



Table 2: Proportional Cost Sharing: costtπ(k)
k = 1 k = 2 k = 3 k = 4

π(k) = P1 π(k) = P2 π(k) = P3 π(k) = P4

t = 1 40
t = 2 60 60
t = 3 30 30 60
t = 4 32 32 64 32

of passengers is missing. We present typical cost-sharing
mechanisms and some of their shortcomings in an online
setting using the DRT example in Section 2.2.

2.3.1 Proportional Cost Sharing
One commonly used cost-sharing mechanism is propor-

tional cost sharing [16, 14], where the total cost is dis-
tributed among all passengers proportionally to their alpha
values, which reflects that passengers with higher demands
should contribute more toward the total cost. Consequently,
for all times k and t and all arrival orders π with 1 ≤ k ≤ t,
the shared cost of passenger π(k) at time t under arrival
order π is

costtπ(k) := totalcosttπ
απ(k)∑t
j=1 απ(j)

.

Instead of distributing the total (operating) cost among all
passengers, one could also distribute the operating cost of
each shuttle among all passengers serviced by that shuttle,
which results in identical properties for the DRT example
in Section 2.2 since there is only one shuttle in the DRT
example.

Table 2 shows the shared costs for the DRT example. For
example, the total cost at time 3 is 120. It is distributed
among all passengers that have arrived by time 3, namely
Passengers P1, P2 and P3, proportionally to their alpha val-
ues, namely 2, 2 and 4, respectively. Consequently, the
shared cost of Passenger P3 at time 3 and thus the fare
quoted to Passenger P3 after its arrival is cost3π(3) = 60.
Similarly, the total cost at time 4 is 160. It is distributed
among all passengers that have arrived at time 4, namely
Passengers P1, P2, P3 and P4, proportionally to their alpha
values, namely 2, 2, 4 and 2, respectively. Consequently, the
shared cost of Passenger P3 at time 4 and thus its fare is
cost4π(3) = 64, implying that its fare is higher than its fare
quote at time 3. This is undesirable because Passenger P3

might accept the fare quote but not the higher fare, mean-
ing that it will have to drop out shortly before receiving its
ride and then needs to search for a last-minute alternative
to using the DRT system, which might be pricy and is not
guaranteed to exist. Thus, we suggest that a fare quote
should be an upper bound on the fare (immediate-response
property). We also suggest that the upper bound should
be reasonably low since passengers might otherwise look for
alternatives to using the DRT system, commit to one and
then drop out unnecessarily. Obtaining reasonably low up-
per bounds can be difficult since the DRT system has no
knowledge of future arrivals of passengers.

2.3.2 Incremental Cost Sharing
Another commonly used cost-sharing mechanism is incre-

mental cost sharing [9], where the shared cost of each pas-
senger is its marginal cost, which is the increase in total cost
due to its arrival. Consequently, for all times k and t and all
arrival orders π with 1 ≤ k ≤ t, the shared cost of passenger
π(k) at time t under arrival order π is

costtπ(k) := mcπ(k).

Table 3 (left) shows the shared costs for the DRT example
in Section 2.2. For example, the marginal cost of Passenger
P3 is 0. Consequently, the shared cost of Passenger P3 from
its arrival at time 3 on is 0, and thus both its fare quote
and fare are 0 as well. In general, incremental cost sharing
satisfies the immediate-response property since the marginal
costs are independent of time. The fares of Passengers P1,
P2, P3 and P4 are 40, 80, 0 and 40, respectively. Thus, Pas-
senger P3 is a free rider, which is undesirable in general and
especially in the context of the DRT example since Passen-
ger P3 has the highest demand, which should be reflected in
the fares. Proportional cost sharing does not suffer from this
problem. For the discussion below, notice that the fare per
alpha value of Passenger P1 is 20 and the one of Passenger
P3 is 0 even though Passenger P1 arrives before Passenger
P3.

Table 3 (right) shows the shared costs for the DRT ex-
ample in Section 2.2 if Passenger P1 delays its arrival and
the passengers arrive in order P2, P1, P3 and P4. Now, the
shared cost of Passenger P1 from its arrival at time 2 on is
0, and thus both its fare quote and fare are 0 as well. Thus,
Passenger P1 can reduce its fare from 40 to 0 by strategi-
cally delaying its arrival. This delay is undesirable because
synergies with the early ride requests allow the DRT system
to offer low fare quotes to new passengers. We therefore
suggest to ensure that the best strategy of every passenger
is to arrive truthfully (that is, as early as possible) because
it cannot decrease its fare by delaying its arrival (incentive-
compatibility property). Incremental cost sharing does not
satisfy this property as shown above. Similarly, under incre-
mental cost sharing, Passenger P1 and P2 prefers to pay the
fare of Passenger P3 rather than their own fare because Pas-
senger P3 enjoys a free ride due to payments of these two
passengers. We therefore suggest that the fares per alpha
value of passengers are never higher than those of passen-
gers that arrive after them (online-fairness property).

2.4 Desirable Properties
None of the cost-sharing mechanisms discussed so far are

well-suited for the DRT problem. Based on their shortcom-
ings, we derive a list of desirable properties for online cost-
sharing mechanism. Our primary objective is to design an
online cost-sharing mechanism that provides incentives for
passengers to arrive truthfully while satisfying basic prop-
erties of cost-sharing mechanism in general, such as fairness
and budget balance.

Online Fairness: The shared costs per alpha value of
passengers are never higher than those of passengers who
arrive after them, that is, for all times k1, k2 and t and all
arrival orders π with 1 ≤ k1 ≤ k2 ≤ t,

costt
π(k1)

απ(k1)
≤
costt

π(k2)

απ(k2)
.

Immediate Response: Passengers are provided imme-
diately after their arrivals with (ideally low) upper bounds
on their shared costs at any future time, that is, for all times
k, t1 and t2 and all arrival orders π with 1 ≤ k ≤ t1 ≤ t2,

costt1
π(k)

≥ costt2
π(k)

.

Individual Rationality: The shared costs of passengers
who accepted their fare quotes never exceed their fare limits



Table 3: Incremental Cost Sharing: costtπ(k)
Truthful Arrival Delayed Arrival

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4
π(k) = P1 π(k) = P2 π(k) = P3 π(k) = P4 π(k) = P2 π(k) = P1 π(k) = P3 π(k) = P4

t = 1 40 120
t = 2 40 80 120 0
t = 3 40 80 0 120 0 0
t = 4 40 80 0 40 120 0 0 40

at any future time, that is, for all times k and t and all
arrival orders π with 1 ≤ k ≤ t,

costtπ(k) ≤ wπ(k).

Budget Balance: The total cost equals the sum of the
shared costs of all passengers, that is, for all times t and all
arrival orders π with 1 ≤ t,

t∑
j=1

costtπ(j) = totalcosttπ .

Ex-Post Incentive Compatibility:1 The best strategy
of every passenger is to arrive truthfully, provided that all
other passengers arrive truthfully as well and do not change
whether they accept their fare quotes or drop out, because it
then cannot decrease its shared cost by delaying its arrival,
that is, for all times k1, k2 and t and all arrival orders π and
π′ with 1 ≤ k1 < k2 ≤ t and

π′(k) =


π(k + 1) if k1 ≤ k < k2
π(k1) if k = k2
π(k) otherwise,

costtπ(k1) ≤ costtπ′(k2)
.

The online fairness and ex-post incentive-compatibility
properties are similar but one does not imply the other.
Basically, they provide incentives for passengers to arrive
truthfully. Thus, the DRT systems have more time to pre-
pare and might also be able to offer subsequent passengers
lower fares due to synergies with the early ride requests,
which might allow them to service more passengers. The
online-fairness property is also meant to ensure that passen-
gers consider the fares to be fair. The immediate-response

1We would like the ex-post incentive-compatibility property
ideally to state that the best strategy of every passenger
is to arrive truthfully because it cannot decrease its shared
cost by delaying its arrival. However, we impose two condi-
tions in this paper that we hope to be able to relax in the
future. The first condition is that all other passengers arrive
truthfully, which, for example, rules out collusion of several
passengers. In general, the literature on online-mechanism
design [12] distinguishes two types of incentive compatibil-
ity, namely dominant-strategy incentive compatibility and
ex-post incentive compatibility. Dominant-strategy incentive
compatibility does not require the first condition, while ex-
post incentive compatibility does. Dominant-strategy incen-
tive compatibility is difficult to achieve in an online setting
[12], which is why we impose the first condition in this pa-
per. The second condition is that the other passengers do
not change whether they accept their fare quotes or drop
out, even though, for example, the delayed arrival of a pas-
senger could cause the fare quotes of subsequent passengers
to increase, which might make them drop out. The arrival
orders with and without the delayed arrival of the passen-
ger are then difficult to relate, which is why we impose the
second condition in this paper.

property enables DRT systems to provide fare quotes, in
form of upper bounds on the fares, to passengers immedi-
ately after their arrivals despite missing knowledge of future
arrivals of passengers. Thus, passengers have no uncertainty
about whether they can be serviced or how high their fares
will be, while the DRT systems reduce their uncertainty
about passengers dropping out and can thus prepare bet-
ter. Yet, the DRT system still retains some flexibility to
optimize the routes and schedules after future arrivals of
passengers. The budget-balance property guarantees that
the sum of the fares of all passengers always equals the total
cost. Thus, no profit is made and no subsidies are required.

We stated sufficient rather than necessary conditions for
the properties. For example, the budget-balance property
could be weakened to state that the total cost equals the
sum of the shared costs of all passengers after the arrival of
the last passenger. Requiring the properties to be satisfied
at any time rather than only after the arrival of the last pas-
senger simplifies the development of the online cost-sharing
mechanism since they do not know in advance when the last
passenger arrives.

3. POCS
In this section, we describe a novel online cost-

sharing mechanism, called Proportional Online Cost Sharing
(POCS), which satisfies the properties listed in Section 2.4,
as proved in the technical report [4]. The idea behind POCS
is the following: POCS partitions passengers into coalitions,
where coalitions contain all passengers that arrive within
given time intervals (rather than, for example, all passengers
served by the same shuttle). Initially, each newly arriving
passenger forms its own coalition. However, passengers can
choose to form coalitions with passengers that arrive directly
after them to decrease their shared costs per alpha value,
which implies the online fairness, immediate response, and
ex-post incentive-compatibility properties. For example, the
immediate-response property is satisfied because passengers
add other passengers to their coalitions only when this de-
creases their shared costs per alpha value and thus also their
shared costs (since the alpha values are positive).

3.1 Calculation of Shared Costs
We now describe how POCS calculates the shared costs.

Definition 6. For all times k1, k2 and t and all arrival
orders π with k1 ≤ k2 ≤ t, the coalition cost per alpha value
of passengers π(k1), . . . , π(k2) at time t under arrival order
π is

ccpaπ(k1,k2) :=

∑k2
j=k1

mcπ(j)∑k2
j=k1

απ(j)
.

Definition 7. For all times k and t and all arrival orders
π with k ≤ t, the shared cost of passenger π(k) at time t



under arrival order π is

costtπ(k) := απ(k) min
k≤j≤t

max
1≤i≤j

ccpaπ(i,j).

3.2 Other Cost-Sharing Mechanisms
The following definition and lemma, whose proof is pro-

vided in the technical report [4], helps to understand the
similarities between POCS and other cost-sharing mecha-
nisms. It states that the shared costs per alpha value of all
passengers in any coalition are always identical and equal to
the coalition cost per alpha value of the coalition.

Definition 8. For all times k1, k2 and t and all arrival
orders π with k1 ≤ k2 ≤ t, a coalition (k1, k2) at time t is a
group of passengers π(k1), . . . , π(k2) with

costt
π(k)

απ(k)
=
costt

π(k1)

απ(k1)

for all times k with k1 ≤ k ≤ k2 and the preceeding equality
not holding for all times k with (k = k1 − 1 or k = k2 + 1)
and 1 ≤ k ≤ t.

Lemma 1. The shared cost per alpha value of any passen-
ger in any coalition at any time equals the coalition cost per
alpha value of the coalition, that is, for all times k1, k, k2
and t and all arrival orders π with 1 ≤ k1 ≤ k ≤ k2 ≤ t such
that (k1, k2) is a coalition at time t,

costt
π(k)

απ(k)
= ccpaπ(k1,k2).

Lemma 1 implies that POCS is a combination of pro-
portional and incremental cost sharing. The sum of the
marginal costs of all passengers in any coalition (“the total
cost of all passengers in the coalition”) at time t is distributed
among all passengers in the coalition proportionally to their
alpha values since, for all times k1, k, k2 and t and all ar-
rival orders π with k1 ≤ k ≤ k2 ≤ t such that (k1, k2) is a
coalition at time t,

costtπ(k)
Lem.1
= απ(k)ccpaπ(k1,k2)

Def.6
= απ(k)

∑k2
j=k1

mcπ(j)∑k2
j=k1

απ(j)

=

 k2∑
j=k1

mcπ(j)

 απ(k)∑k2
j=k1

απ(j)
,

which is similar to proportional cost sharing where the total
cost (of all passengers) is distributed among all passengers
proportionally to their alpha values.

The sum of the shared costs of all passengers in any coali-
tion (“the shared cost of the coalition”) at time t equals
the sum of the marginal costs of all passengers in the coali-
tion (“the marginal cost of the coalition”) at the same time
since, for all times k1, k2 and t and all arrival orders π with
k1 ≤ k2 ≤ t such that (k1, k2) is a coalition at time t,

k2∑
j=k1

costtπ(j)
Lem.1
= ccpaπ(k1,k2)

k2∑
j=k1

απ(j)

Def.6
=

∑k2
j=k1

mcπ(j)∑k2
j=k1

απ(j)

k2∑
j=k1

απ(j)

=

k2∑
j=k1

mcπ(j),
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Figure 2: DRT Example 2

Table 4: POCS: ccpaπ(k1,k2)
k2 = 1 k2 = 2 k2 = 3 k2 = 4

π(k2) = P1 π(k2) = P2 π(k2) = P3 π(k2) = P4

k1 = 1 π(k1) = P1 20 30 15 16
k1 = 2 π(k1) = P2 40 13 1/3 15
k1 = 3 π(k1) = P3 0 6 2/3
k1 = 4 π(k1) = P4 20

which is similar to incremental cost sharing. where the
shared cost of a passenger is its marginal cost. It also im-
plies the budget-balance property since summing over all
passengers in all coalitions is identical to summing over all
passengers and the sum of the marginal costs of all passen-
gers equals the total cost.

3.3 Illustration
Table 4 shows the coalition costs per alpha value for the

DRT example in Section 2.2. The coalition costs per alpha
value are used to calculate the shared costs, shown in Ta-
ble 5. The shared costs, in turn, are used to calculate the
shared costs per alpha value, shown in Table 6, by dividing
the shared costs by the alpha values, shown in Table 1. For
example, at time 4, Passengers P1, P2 and P3 form a coali-
tion (since their shared costs per alpha value are equal),
and Passenger P4 forms a coalition by itself. The sum of
the marginal costs of the three passengers in the first coali-
tion (“the total cost of all passengers in the coalition”) is
120 and is distributed among all passengers in the coalition
proportionally to their alpha values, namely 2, 2 and 4, re-
spectively. Consequently, the shared cost of Passenger P3

at time 4 and thus its fare is cost4π(3) = 60. Table 6 shows
that the shared costs per alpha value in each row are mono-
tonically non-decreasing from left to right, corresponding to
the online-fairness property. Table 5 shows that the shared
costs in each column are monotonically non-increasing from
top to bottom (and consequently Table 6 shows that the
shared costs per alpha value have the same property), cor-
responding to the immediate-response property. Table 5 also
shows that the sum of the shared costs in each row equals
the total cost at the corresponding time, corresponding to
the budget-balance property.

3.4 Ex-Post Incentive Compatibility
We use the DRT example in Figure 2 to illustrate that

POCS does not satisfy the ex-post incentive-compatibility
property if the second condition (namely that the other pas-
sengers do not change whether they accept their fare quotes
or drop out) is removed. There is one shuttle that can trans-
port up to four passengers and starts at the star. The shut-
tle incurs an operating cost of 10 for each unit of distance
traveled and needs to return to its initial location. There
are three passengers. Passengers P1 and P3 accept all fare
quotes, while Passenger P2 accepts all fare quotes up to 60.
Assume that the passengers arrive in order P1, P2 and P3.
First, Passenger P1 arrives, receives a fare quote of 60 and



Table 5: POCS: costtπ(k)
k = 1 k = 2 k = 3 k = 4

π(k) = P1 π(k) = P2 π(k) = P3 π(k) = P4

t = 1 40
t = 2 40 80
t = 3 30 30 60
t = 4 30 30 60 40

Table 6: POCS: costtπ(k)/απ(k)
k = 1 k = 2 k = 3 k = 4

π(k) = P1 π(k) = P2 π(k) = P3 π(k) = P4

t = 1 20
t = 2 20 40
t = 3 15 15 15
t = 4 15 15 15 20

accepts it. Second, Passenger P2 arrives, receives a fare
quote of 50 and accepts it. Third, Passenger P3 arrives,
receives a fare quote of 50 and accepts it. In the end, Pas-
sengers P1, P2 and P3 are serviced with fares of 25, 25 and
50, respectively. Now assume that Passenger P1 delays its
arrival, and the passengers arrive in order P2, P3 and P1.
First, Passenger P2 arrives, receives a fare quote of 80 and
drops out since the fare quote exceeds its fare limit of 60.
Second, Passenger P3 arrives, receives a fare quote of 40 and
accepts it. Third, Passenger P1 arrives, receives a fare quote
of 20 and accepts it. In the end, Passengers P1 and P3 are
serviced with fares of 20 and 40, respectively. Thus, Passen-
ger P1 managed to decrease both its fare quote and fare by
delaying its arrival since this caused Passenger P2 to drop
out.

4. EXPERIMENTAL ANALYSIS
We have proved that POCS satisfies five properties that

make DRT systems more attractive to both shuttle providers
and passengers, provided that our assumptions are satisfied.
For example, Definition 2 assumes that the total cost satis-
fies two properties that hold for the minimal operating cost,
which is therefore the quantity that we have used so far
for the total cost. Calculating the minimal operating cost
is typically an NP-hard problem and thus time-consuming.
However, DRT systems need to calculate the minimal op-
erating cost every time a ride request is submitted, which
would prevent them from operating in real-time. We thus
present an experimental study with a transport simulation
where the DRT system uses a heuristic to compute a low
operating cost that is not guaranteed to be minimal [10].
In this case, the assumption in Definition 2 that the total
cost is independent of the arrival order of passengers (which
implies that the decisions of passengers to accept their fare
quotes or drop out and thus also their fare quotes them-
selves do not depend on the arrival order of passengers) is
not satisfied. This assumption is used (only) to prove that
POCS satisfies the ex-post incentive-compatibility property.
We thus investigate whether the best strategy of every pas-
senger remains to arrive truthfully, for example because the
likelihood of transport capacity still being available tends to
decrease over time.

4.1 Transport Simulator
Our transport simulator first generates a given number of

shuttles and passengers. Each shuttle is characterized by its
capacity, start location, end location, operating time win-

dow and operating cost for each unit of distance traveled.
Each passenger is characterized by its truthful arrival time,
start location, end location, pick-up time window, drop-off
time window and fare limit. The settings of our simulator
are slightly more general than what we have used in the
DRT examples because operating time windows of shuttles
and pick-up and drop-off time windows of passengers are
taken into account. The transport simulator then simulates
each passenger. Once a passenger is assigned to a shuttle,
it is never re-assigned to a different shuttle, which makes
it possible to calculate the marginal cost of a passenger as
the lowest operating cost increase of adding the passenger
to any shuttle, but is also a reason why the total cost (which
equals the sum of the operating costs of all shuttles) is not
guaranteed to be equal to the minimal operating cost or to
be independent of the arrival order of the passengers. When
a new passenger submits a ride request, the transport simu-
lator requests from each shuttle the operating cost increase
from adding the passenger to all passengers previously as-
signed to it, selects a shuttle with the lowest operating cost
increase and then uses POCS to calculate a fare quote for
the passenger under the assumption that the passenger is
assigned to the selected shuttle. If the fare limit of the pas-
senger is lower than this fare quote, then the passenger drops
out, and the transport simulator does not service it. Other-
wise, the passenger accepts the fare quote, and the transport
simulator adds it to all passengers previously assigned to the
selected shuttle and then updates the shared costs of all pas-
sengers assigned to the shuttles.

Each shuttle has to calculate its route, schedule and op-
erating cost increase (or, equivalently, operating cost) when
adding a new passenger to all passengers previously assigned
to it. The shuttle maintains an itinerary for all passengers
assigned to it - in the form of a sequence of locations, namely
its start location, its end location and the start and end loca-
tions of all passengers assigned to it. It calculates its travel
distance as the shortest travel distance needed to visit all
locations in the order given in its itinerary, and it calculates
its operating cost as the product of its travel distance and
its operating cost for each unit of distance traveled. Deter-
mining an itinerary for the new passenger and all passengers
previously assigned to it that minimizes its operating cost is
time-consuming. The shuttle therefore uses a non-optimal
scheduling method [17, 11], which is another reason why the
total cost is not guaranteed to equal the minimal operating
cost and not guaranteed to be independent of the arrival or-
der of passengers. In the construction phase of the schedul-
ing method, the shuttle uses a cheapest-insertion method to
construct a (feasible) itinerary by inserting the start and end
locations of the new passenger into the cached itinerary for
the passengers previously assigned to it. In the subsequent
improvement phase of the scheduling method, the shuttle
uses tabu search [7, 13, 5, 6], a form of hill climbing, to
improve the itinerary from the construction phase.

4.2 Experiment 1
In Experiment 1, we demonstrate that passengers have

an incentive to arrive truthfully since their fare quotes and
fares tend to increase as their arrival times increase. Thus,
it is more likely that they accept their fare quotes and are
serviced for low fares if they arrive as early as possible. We
perform 10,000 simulations with the transport simulator in
a grid city of size 11 × 11 (that is, with 121 locations) and
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Figure 3: Results of Experiment 1

report average results. There are 25 shuttles that can each
transport up to 10 passengers and operate the same hours
from dawn (time 101) to dusk (time 1440). We assume that
passengers submit their requests before dawn (the departure
time of the shuttles) because otherwise the marginal costs
depend on their arrival times. We also assume that shuttles
have sufficient time to service all passengers before dusk.
The shuttles start at a depot in the center of the city. Each
shuttle incurs an operating cost of 1 for each unit of distance
traveled and needs to return to its initial location at dusk.
There are 100 passengers that all arrive truthfully one at a
time (that is, their arrival times range from time 1 to time
100). The start location of 20 percent of the passengers is the
depot. The start locations of the other passengers and the
end locations of all passengers are randomly selected from all
locations with uniform probability. The pick-up and drop-off
time windows are identical for each passenger but might be
different from passenger to passenger. Their lower bounds
are dawn, and the differences between their upper and lower
bounds are randomly selected from being 2.5 to 3.0 times
higher than their alpha values (that is, the shortest point-
to-point travel distance from their start location to their
end location). Thus, passengers do not have tight schedules,
resulting in low fare quotes. The fare limits of passengers
are randomly selected from being 1.5 to 3.0 times higher
than their alpha values. Thus, passengers have high fare
limits. For both of these reasons, the fare quotes often do
not exceed the fare limits. Many passengers therefore accept
their fare quotes and are serviced.

Figure 3 shows the probability that passengers accept
their fare quotes (“Matched Probabilities of Passengers”) as
a function of their arrival times k, that is, the percentage of
simulations with costkπ(k) ≤ wπ(k). The probability that pas-
sengers accept their fare quotes is around 75 percent. It de-
creases as their arrival times increase (since their fare quotes
tend to increase as their arrival times increase) but only

very slowly. Figure 3 also shows the fares per alpha value of
all passengers that accepted their fare quotes (“Normalized
Shared Costs”) as a function of their arrival times k, that is,
cost100π(k) averaged over all simulations with costkπ(k) ≤ wπ(k).
The fares per alpha value of passengers increase as their
arrival times increase (as suggested by the online fairness
property) but only very slowly. The only exception is the
sharp increase for arrival times close to 100 since passengers
that arrive then can no longer share their costs with a high
number of passengers that arrive after them.

4.3 Experiment 2
The definition of ex-post incentive compatibility states

that the best strategy of every passenger is to arrive truth-
fully, provided that all other passengers arrive truthfully
as well and do not change whether they accept or decline
their fare quotes, two assumptions that are not guaranteed
to be satisfied in practice. We have already shown in Sec-
tion 3.4 that POCS does not satisfy the ex-post incentive-
compatibility property if the second condition is removed.
In Experiment 2, we therefore evaluate how likely it is that
passengers can decrease their fares by delaying their arrivals
if the second condition is removed. Experiment 2 is similar
to Experiment 1, except that we distinguish four scenarios
with different flexibilities of shuttles and passengers and use
experimental parameters that decrease the scale of the ex-
periment since each simulation is now more time-consuming.
We perform 1,000 simulations with the transport simula-
tor in a grid city of size 5 × 5 and report average results.
Each simulation consists of at most 45 runs in addition to
a run where Passengers P1 . . . P10 arrive truthfully in order
P1 . . . P10, namely runs where all passengers arrive truth-
fully except that Passenger Pi delays its arrival and arrives
only immediately after Passenger Pj for all i and j with
1 ≤ i < j ≤ 10 where Passenger Pi accepts its fare quote
when all passengers arrive truthfully. There are either 2 or
10 shuttles (for two scenarios) that can each transport up
to 3 passengers, operate the same hours from dawn to dusk
and start at a depot in the center of the city. Each shut-
tle incurs an operating cost of 1 for each unit of distance
traveled and needs to return to its initial location at dusk.
There are 10 passengers that arrive one at a time (that is,
their arrival times range from time 1 to time 10) before the
shuttles start to service them. The start and end locations of
all passengers are randomly selected from all locations with
uniform probability. The pick-up and drop-off time windows
are identical for each passenger but might be different from
passenger to passenger. Their lower bounds are dawn, and
the differences between their upper and lower bounds are
either 3.0 or 4.0 times (for two scenarios) higher than their
alpha values. The fare limits of passengers are 3.0 times
higher than their alpha values.

Table 7 shows, for each scenario, both the number of runs
and the probabilities that passengers who delay their arrivals
improve (since their fares decrease), do not change (since
their fares remain unchanged) or worsen (since either their
fare quotes increase sufficiently for them to drop out or - in
case they do not drop out - their fares increase) their situa-
tions. Experiment 2 demonstrates that passengers have an
incentive to arrive truthfully since, in all scenarios, the prob-
ability that passengers who delay their arrivals improve their
situations is lower than 20 percent while the probability that
they worsen their situation is higher than 50 percent. Exper-



Table 7: Results of Experiment 2
Scenario Number of Time Number of Situation No Situation Worsens

Shuttles Window Runs Improves Change Not Dropping Out Dropping Out
1 2 3.0 32,808 11% 32% 24% 33%
2 2 4.0 37,259 15% 31% 39% 15%
3 10 3.0 36,955 16% 31% 51% 2%
4 10 4.0 37,990 17% 29% 51% 3%

iment 2 does not measure one advantage of passengers who
delay their arrivals, namely the situation when passengers
originally dropped out since their fare quotes exceeded their
fare limits and by delaying their arrivals improve their fare
quotes so they no longer drop out. Also, Experiment 2 as-
sumes that passengers delay their arrivals randomly (rather
than strategically) due to missing knowledge of future ar-
rivals of passengers. The probability that the situation for
passengers who delay their arrivals worsens is zero if passen-
gers are able to delay their arrivals strategically since they
can always decide to arrive truthfully instead, in which case
their situations do not change. We thus expect the proba-
bility that their situations improve to increase.

5. CONCLUSIONS
In this paper, we determined properties of cost-sharing

mechanisms that we believe make demand-responsive trans-
port systems attractive to both shuttles and passengers,
namely online fairness, immediate response, individual ratio-
nality, budget balance and ex-post incentive compatibility.
We then proposed a novel cost-sharing mechanism, called
Proportional Online Cost Sharing (POCS), that has these
properties. Overall, POCS is a first step towards addressing
some of the problems raised by the missing knowledge of fu-
ture arrivals of passengers, which differentiates our research
from previous research [3, 15, 8, 1]. However, some issues re-
main to be addressed by more advanced online cost-sharing
mechanisms, including integrating more complex models of
passengers, shuttles and transport environments. Our cur-
rent simplifying assumptions include, for example, that the
availability of shuttles does not change unexpectedly, that
all passengers arrive before the shuttles start to service pas-
sengers, that fares depend only on the ride requests and no
other considerations (for example, that DRT systems do not
face competition), that all passengers evaluate their trips
uniformly according to the criteria quantified by the alpha
values (for example, that all passengers consider travel time
to be equally important), that DRT systems provide fare
quotes to passengers without predicting future arrivals of
passengers (for example, that DRT systems service hard-to-
accommodate passengers even though these passengers in-
crease the shared costs of subsequent passengers and might
make subsequent passengers drop out), that passengers try
to decrease their fares only by delaying their arrivals (rather
than, for example, by colluding with other passengers or en-
tering fake ride requests under false names) and that passen-
gers honor their commitments (for example, that passengers
do not change ride requests, cancel them or show up late).
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